Suppr超能文献

矿物质保护调节着自然有机碳的长期全球封存。

Mineral protection regulates long-term global preservation of natural organic carbon.

机构信息

Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA.

Lorenz Center, Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Nature. 2019 Jun;570(7760):228-231. doi: 10.1038/s41586-019-1280-6. Epub 2019 Jun 12.

Abstract

The balance between photosynthetic organic carbon production and respiration controls atmospheric composition and climate. The majority of organic carbon is respired back to carbon dioxide in the biosphere, but a small fraction escapes remineralization and is preserved over geological timescales. By removing reduced carbon from Earth's surface, this sequestration process promotes atmospheric oxygen accumulation and carbon dioxide removal. Two major mechanisms have been proposed to explain organic carbon preservation: selective preservation of biochemically unreactive compounds and protection resulting from interactions with a mineral matrix. Although both mechanisms can operate across a range of environments and timescales, their global relative importance on 1,000-year to 100,000-year timescales remains uncertain. Here we present a global dataset of the distributions of organic carbon activation energy and corresponding radiocarbon ages in soils, sediments and dissolved organic carbon. We find that activation energy distributions broaden over time in all mineral-containing samples. This result requires increasing bond-strength diversity, consistent with the formation of organo-mineral bonds but inconsistent with selective preservation. Radiocarbon ages further reveal that high-energy, mineral-bound organic carbon persists for millennia relative to low-energy, unbound organic carbon. Our results provide globally coherent evidence for the proposed importance of mineral protection in promoting organic carbon preservation. We suggest that similar studies of bond-strength diversity in ancient sediments may reveal how and why organic carbon preservation-and thus atmospheric composition and climate-has varied over geological time.

摘要

光合作用有机碳的生产和呼吸之间的平衡控制着大气成分和气候。大部分有机碳在生物圈中被呼吸回二氧化碳,但一小部分逃脱了再矿化作用,并在地质时间尺度上保存下来。通过从地球表面去除还原碳,这个固碳过程促进了大气氧气的积累和二氧化碳的去除。有两种主要的机制被提出来解释有机碳的保存:生物化学上无反应的化合物的选择性保存和与矿物基质相互作用产生的保护。虽然这两种机制可以在不同的环境和时间尺度上起作用,但它们在 1000 年到 10 万年时间尺度上的全球相对重要性仍然不确定。在这里,我们提出了一个全球土壤、沉积物和溶解有机碳中有机碳活化能和相应放射性碳年龄分布的数据集。我们发现,所有含矿物的样本中,活化能分布随时间拓宽。这一结果需要增加键强多样性,与有机-矿物键的形成一致,但与选择性保存不一致。放射性碳年龄进一步揭示,高能、矿物结合的有机碳比低能、无束缚的有机碳能持续几千年。我们的研究结果为矿物保护在促进有机碳保存方面的重要性提供了全球一致的证据。我们认为,对古代沉积物中键强多样性的类似研究可能揭示出有机碳保存以及大气成分和气候是如何以及为何在地质时间尺度上发生变化的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验