一种使用连续对齐和纹理复合微纤维的纺织平台,用于工程肌腱到骨界面梯度支架。

A Textile Platform Using Continuous Aligned and Textured Composite Microfibers to Engineer Tendon-to-Bone Interface Gradient Scaffolds.

机构信息

3B's Research Group, i3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal.

ICVS/3B's- PT Government Associate Laboratory, 4806-909, Braga, Guimarães, Portugal.

出版信息

Adv Healthc Mater. 2019 Aug;8(15):e1900200. doi: 10.1002/adhm.201900200. Epub 2019 Jun 13.

Abstract

Tendon-to-bone interfaces exhibit a hierarchical multitissue transition. To replicate the progression from mineralized to nonmineralized tissue, a novel 3D fibrous scaffold is fabricated with spatial control over mineral distribution and cellular alignment. For this purpose, wet-spun continuous microfibers are produced using polycaprolactone (PCL)/ gelatin and PCL/gelatin/hydroxyapatite nano-to-microparticles (HAp). Higher extrusion rates result in aligned PCL/gelatin microfibers while, in the case of PCL/gelatin/HAp, the presence of minerals leads to a less organized structure. Biological performance using human adipose-derived stem cells (hASCs) demonstrates that topography of PCL/gelatin microfibers can induce cytoskeleton elongation, resembling native tenogenic organization. Matrix mineralization on PCL/gelatin/HAp wet-spun composite microfibers suggest the production of an osteogenic-like matrix, without external addition of osteogenic medium supplementation. As proof of concept, a 3D gradient structure is produced by assembling PCL/gelatin and PCL/gelatin/HAp microfibers, resulting in a fibrous scaffold with a continuous topographical and compositional gradient. Overall, the feasibility of wet-spinning for the generation of continuously aligned and textured microfibers is demonsrated, which can be further assembled into more complex 3D gradient structures to mimic characteristic features of tendon-to-bone interfaces.

摘要

肌腱-骨界面表现出分层的多组织过渡。为了复制从矿化组织到非矿化组织的进展,采用具有空间控制矿化分布和细胞排列的新型 3D 纤维支架来实现。为此,使用聚己内酯(PCL)/明胶和 PCL/明胶/羟基磷灰石纳米-微米颗粒(HAp)通过湿法纺丝连续生产微纤维。更高的挤出速率导致 PCL/明胶微纤维排列,而在 PCL/明胶/HAp 的情况下,矿物质的存在导致结构不太有序。使用人脂肪来源干细胞(hASC)进行的生物学性能研究表明,PCL/明胶微纤维的形貌可以诱导细胞骨架伸长,类似于天然腱组织的结构。PCL/明胶/HAp 湿法纺丝复合微纤维上的基质矿化表明产生了类成骨基质,而无需外部添加成骨培养基。作为概念验证,通过组装 PCL/明胶和 PCL/明胶/HAp 微纤维来制备 3D 梯度结构,从而产生具有连续形貌和组成梯度的纤维支架。总体而言,湿纺法用于生成连续对齐和纹理化微纤维的可行性已得到证明,并且可以进一步组装成更复杂的 3D 梯度结构,以模拟肌腱-骨界面的特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索