文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于肿瘤治疗的缺氧激活型纳米颗粒。

Hypoxia-active nanoparticles used in tumor theranostic.

机构信息

Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, People's Republic of China.

Chinese Academy of Sciences Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.

出版信息

Int J Nanomedicine. 2019 May 22;14:3705-3722. doi: 10.2147/IJN.S196959. eCollection 2019.


DOI:10.2147/IJN.S196959
PMID:31190820
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6535445/
Abstract

Hypoxia is a hallmark of malignant tumors and often correlates with increasing tumor aggressiveness and poor treatment outcomes. Therefore, early diagnosis and effective killing of hypoxic tumor cells are crucial for successful tumor control. There has been a surge of interdisciplinary research aimed at developing functional molecules and nanomaterials that can be used to noninvasively image and efficiently treat hypoxic tumors. These mainly include hypoxia-active nanoparticles, anti-hypoxia agents, and agents that target biomarkers of tumor hypoxia. Hypoxia-active nanoparticles have been intensively investigated and have demonstrated advanced effects on targeting tumor hypoxia. In this review, we present an overview of the reports published to date on hypoxia-activated prodrugs and their nanoparticle forms used in tumor-targeted therapy. Hypoxia-responsive nanoparticles are inactive during blood circulation and normal physiological conditions but are activated by hypoxia once they extravasate into the hypoxic tumor microenvironment. Their use can enhance the efficiency of tumor chemotherapy, radiotherapy, fluorescence and photoacoustic intensity, and other imaging and therapeutic strategies. By targeting the broad habitats of tumors, rather than tumor-specific receptors, this strategy has the potential to overcome the problem of tumor heterogeneity and could be used to design diagnostic and therapeutic nanoparticles for a broad range of solid tumors.

摘要

缺氧是恶性肿瘤的一个标志,通常与肿瘤侵袭性增加和治疗效果差有关。因此,早期诊断和有效杀伤缺氧肿瘤细胞对于成功控制肿瘤至关重要。目前,有大量跨学科研究旨在开发功能分子和纳米材料,用于非侵入性地对缺氧肿瘤进行成像和有效治疗。这些主要包括缺氧激活的纳米颗粒、抗缺氧剂和针对肿瘤缺氧生物标志物的药物。缺氧激活的纳米颗粒已得到深入研究,并在靶向肿瘤缺氧方面显示出了先进的效果。在这篇综述中,我们总结了迄今为止关于用于肿瘤靶向治疗的缺氧激活前药及其纳米形式的报告。在血液循环和正常生理条件下,缺氧响应性纳米颗粒是不活跃的,但一旦它们渗出到缺氧的肿瘤微环境中,就会被缺氧激活。它们的使用可以提高肿瘤化疗、放疗、荧光和光声强度等成像和治疗策略的效率。通过靶向肿瘤的广泛栖息地,而不是肿瘤特异性受体,这种策略有可能克服肿瘤异质性的问题,并可用于设计用于广泛的实体瘤的诊断和治疗性纳米颗粒。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1621/6535445/3493373730ce/IJN-14-3705-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1621/6535445/2c02fdb23908/IJN-14-3705-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1621/6535445/a5756548302d/IJN-14-3705-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1621/6535445/278d79fd3120/IJN-14-3705-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1621/6535445/3493373730ce/IJN-14-3705-g0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1621/6535445/2c02fdb23908/IJN-14-3705-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1621/6535445/a5756548302d/IJN-14-3705-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1621/6535445/278d79fd3120/IJN-14-3705-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1621/6535445/3493373730ce/IJN-14-3705-g0004.jpg

相似文献

[1]
Hypoxia-active nanoparticles used in tumor theranostic.

Int J Nanomedicine. 2019-5-22

[2]
Stimuli-responsive nanoparticles for targeting the tumor microenvironment.

J Control Release. 2015-12-10

[3]
Hypoxia-activated nanomedicines for effective cancer therapy.

Eur J Med Chem. 2020-3-30

[4]
Chemical Design and Synthesis of Functionalized Probes for Imaging and Treating Tumor Hypoxia.

Chem Rev. 2017-4-20

[5]
Hypoxia-directed and activated theranostic agent: Imaging and treatment of solid tumor.

Biomaterials. 2016-7-14

[6]
Hypoxia-Triggered Self-Assembly of Ultrasmall Iron Oxide Nanoparticles to Amplify the Imaging Signal of a Tumor.

J Am Chem Soc. 2021-2-3

[7]
Oxygenated theranostic nanoplatforms with intracellular agglomeration behavior for improving the treatment efficacy of hypoxic tumors.

Biomaterials. 2019-1-4

[8]
Strategies of Alleviating Tumor Hypoxia and Enhancing Tumor Therapeutic Effect by Macromolecular Nanomaterials.

Macromol Biosci. 2021-8

[9]
Designing Hypoxia-Responsive Nanotheranostic Agents for Tumor Imaging and Therapy.

Adv Healthc Mater. 2021-3

[10]
Hypoxia-Activated and Indomethacin-Mediated Theranostic Prodrug Releasing Drug On-Demand for Tumor Imaging and Therapy.

Bioconjug Chem. 2019-10-21

引用本文的文献

[1]
Immunocytes in the tumor microenvironment: recent updates and interconnections.

Front Immunol. 2025-4-14

[2]
Hypoxia-responsive nanoparticles for fluorescence diagnosis and therapy of cancer.

Theranostics. 2025-1-1

[3]
Cellular and molecular aspects of drug resistance in cancers.

Daru. 2024-12-9

[4]
Targeting Tumor Hypoxia with Nanoparticle-Based Therapies: Challenges, Opportunities, and Clinical Implications.

Pharmaceuticals (Basel). 2024-10-18

[5]
Strategies, Challenges, and Prospects of Nanoparticles in Gynecological Malignancies.

ACS Omega. 2024-8-23

[6]
A Hypoxia-Decidual Macrophage Regulatory Axis in Normal Pregnancy and Spontaneous Miscarriage.

Int J Mol Sci. 2024-9-8

[7]
Novel Prodrug Strategies for the Treatment of Tuberculosis.

Chem Asian J. 2024-12-2

[8]
Hypoxia-Activated Theragnostic Prodrugs (HATPs): Current State and Future Perspectives.

Pharmaceutics. 2024-4-19

[9]
Polymersomes as Innovative, Stimuli-Responsive Platforms for Cancer Therapy.

Pharmaceutics. 2024-3-26

[10]
Tumor Microenvironment-Responsive Drug Delivery Based on Polymeric Micelles for Precision Cancer Therapy: Strategies and Prospects.

Biomedicines. 2024-2-11

本文引用的文献

[1]
Hypoxia-targeted drug delivery.

Chem Soc Rev. 2019-2-4

[2]
Tumor hypoxia directed multimodal nanotherapy for overcoming drug resistance in renal cell carcinoma and reprogramming macrophages.

Biomaterials. 2018-8-30

[3]
Hypoxia-Triggered Nanoscale Metal-Organic Frameworks for Enhanced Anticancer Activity.

ACS Appl Mater Interfaces. 2018-7-9

[4]
Platinum(IV) complex-based two-in-one polyprodrug for a combinatorial chemo-photodynamic therapy.

Biomaterials. 2018-5-30

[5]
Light-Enhanced Hypoxia-Response of Conjugated Polymer Nanocarrier for Successive Synergistic Photodynamic and Chemo-Therapy.

ACS Appl Mater Interfaces. 2018-6-21

[6]
Light-Induced Hypoxia-Triggered Living Nanocarriers for Synergistic Cancer Therapy.

ACS Appl Mater Interfaces. 2018-5-30

[7]
Phosphorescent Starburst Pt(II) Porphyrins as Bifunctional Therapeutic Agents for Tumor Hypoxia Imaging and Photodynamic Therapy.

ACS Appl Mater Interfaces. 2018-5-31

[8]
Stimuli-responsive nanotherapeutics for precision drug delivery and cancer therapy.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018-5-4

[9]
Targeting tumor hypoxia with stimulus-responsive nanocarriers in overcoming drug resistance and monitoring anticancer efficacy.

Acta Biomater. 2018-3-13

[10]
Hypoxia-specific therapeutic agents delivery nanotheranostics: A sequential strategy for ultrasound mediated on-demand tritherapies and imaging of cancer.

J Control Release. 2018-2-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索