Majumdar Sunipa, Wadajkar Aniket S, Aljohani Hanan, Reynolds Mark A, Kim Anthony J, Chellaiah Meenakshi
Department of Oncology and Diagnostics, School of Dentistry, University of Maryland, Baltimore, USA.
Departments of Neurosurgery and Pharmacology, School of Medicine, University of Maryland, Baltimore, USA.
Int J Cell Biol. 2019 May 5;2019:6943986. doi: 10.1155/2019/6943986. eCollection 2019.
We have recently demonstrated that a small molecular weight amino-terminal peptide of L-plastin (10 amino acids; "MARGSVSDEE") suppressed the phosphorylation of endogenous L-plastin. Therefore, the formation of nascent sealing zones (NSZs) and bone resorption are reduced. The aim of this study was to develop a biodegradable and biocompatible PLGA nanocarrier that could be loaded with the L-plastin peptide of interest and determine the efficacy in osteoclast cultures. L-plastin MARGSVSDEE (P1) and scrambled control (P3) peptide-loaded PLGA-PEG nanoparticles (NP1 and NP3, respectively) were synthesized by double emulsion technique. The biological effect of nanoparticles on osteoclasts was evaluated by immunoprecipitation, immunoblotting, rhodamine-phalloidin staining of actin filaments, and pit forming assays. Physical characterization of well-dispersed NP1 and NP3 demonstrated ~130-150 nm size, < 0.07 polydispersity index, ~-3 mV -potential, and a sustained release of the peptide for three weeks. Biological characterization in osteoclast cultures demonstrated the following: NP1 significantly reduced (a) endogenous L-plastin phosphorylation; (b) formation of NSZs and sealing rings; (c) resorption. However, the assembly of podosomes which are critical for cell adhesion was not affected. L-plastin peptide-loaded PLGA-PEG nanocarriers have promising potential for the treatment of diseases associated with bone loss. Future studies will use this sustained release of peptide strategy to systematically suppress osteoclast bone resorption activity in mouse models demonstrating bone loss.
我们最近证明,L-原肌球蛋白的一个小分子量氨基末端肽(10个氨基酸;“MARGSVSDEE”)可抑制内源性L-原肌球蛋白的磷酸化。因此,新生封闭区(NSZs)的形成和骨吸收减少。本研究的目的是开发一种可生物降解且生物相容的聚乳酸-羟基乙酸共聚物(PLGA)纳米载体,其可负载感兴趣的L-原肌球蛋白肽,并确定在破骨细胞培养中的疗效。通过双乳液技术合成了负载L-原肌球蛋白MARGSVSDEE(P1)和乱序对照(P3)肽的PLGA-聚乙二醇(PEG)纳米颗粒(分别为NP1和NP3)。通过免疫沉淀、免疫印迹、肌动蛋白丝的罗丹明-鬼笔环肽染色和蚀坑形成试验评估纳米颗粒对破骨细胞的生物学效应。对分散良好的NP1和NP3进行物理表征,结果显示粒径约为130-150 nm,多分散指数<0.07,电位约为-3 mV,且肽可持续释放三周。在破骨细胞培养中的生物学表征显示如下:NP1显著降低了(a)内源性L-原肌球蛋白磷酸化;(b)NSZs和封闭环的形成;(c)吸收。然而,对细胞黏附至关重要的足体组装未受影响。负载L-原肌球蛋白肽的PLGA-PEG纳米载体在治疗与骨质流失相关的疾病方面具有广阔的应用前景。未来的研究将采用这种肽的持续释放策略,在显示骨质流失的小鼠模型中系统地抑制破骨细胞的骨吸收活性。