Suppr超能文献

推进材料性能预测:使用物理信息机器学习模型预测粘度。

Advancing material property prediction: using physics-informed machine learning models for viscosity.

作者信息

Chew Alex K, Sender Matthew, Kaplan Zachary, Chandrasekaran Anand, Chief Elk Jackson, Browning Andrea R, Kwak H Shaun, Halls Mathew D, Afzal Mohammad Atif Faiz

机构信息

Schrödinger, Inc., New York, 10036, USA.

Schrödinger, Inc., Portland, OR, 97204, USA.

出版信息

J Cheminform. 2024 Mar 14;16(1):31. doi: 10.1186/s13321-024-00820-5.

Abstract

In materials science, accurately computing properties like viscosity, melting point, and glass transition temperatures solely through physics-based models is challenging. Data-driven machine learning (ML) also poses challenges in constructing ML models, especially in the material science domain where data is limited. To address this, we integrate physics-informed descriptors from molecular dynamics (MD) simulations to enhance the accuracy and interpretability of ML models. Our current study focuses on accurately predicting viscosity in liquid systems using MD descriptors. In this work, we curated a comprehensive dataset of over 4000 small organic molecules' viscosities from scientific literature, publications, and online databases. This dataset enabled us to develop quantitative structure-property relationships (QSPR) consisting of descriptor-based and graph neural network models to predict temperature-dependent viscosities for a wide range of viscosities. The QSPR models reveal that including MD descriptors improves the prediction of experimental viscosities, particularly at the small data set scale of fewer than a thousand data points. Furthermore, feature importance tools reveal that intermolecular interactions captured by MD descriptors are most important for viscosity predictions. Finally, the QSPR models can accurately capture the inverse relationship between viscosity and temperature for six battery-relevant solvents, some of which were not included in the original data set. Our research highlights the effectiveness of incorporating MD descriptors into QSPR models, which leads to improved accuracy for properties that are difficult to predict when using physics-based models alone or when limited data is available.

摘要

在材料科学中,仅通过基于物理的模型精确计算诸如粘度、熔点和玻璃化转变温度等性质具有挑战性。数据驱动的机器学习(ML)在构建ML模型时也面临挑战,尤其是在数据有限的材料科学领域。为了解决这个问题,我们整合了来自分子动力学(MD)模拟的物理信息描述符,以提高ML模型的准确性和可解释性。我们目前的研究重点是使用MD描述符精确预测液体系统中的粘度。在这项工作中,我们从科学文献、出版物和在线数据库中精心整理了一个包含4000多个小分子粘度的综合数据集。该数据集使我们能够开发由基于描述符的模型和图神经网络模型组成的定量结构-性质关系(QSPR),以预测广泛粘度范围内与温度相关的粘度。QSPR模型表明,纳入MD描述符可改善对实验粘度的预测,特别是在少于一千个数据点的小数据集规模下。此外,特征重要性工具表明,MD描述符捕获的分子间相互作用对粘度预测最为重要。最后,QSPR模型可以准确捕捉六种与电池相关的溶剂的粘度与温度之间的反比关系,其中一些溶剂未包含在原始数据集中。我们的研究突出了将MD描述符纳入QSPR模型的有效性,这使得在单独使用基于物理的模型或数据有限时难以预测的性质的准确性得到提高。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d405/10938832/daeeddbd475d/13321_2024_820_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验