Suppr超能文献

测试蛋白质转移至拥挤蛋白质溶液中的自由能与拥挤剂浓度存在简单的依赖关系。

Transfer Free Energies of Test Proteins Into Crowded Protein Solutions Have Simple Dependence on Crowder Concentration.

作者信息

Nguemaha Valery, Qin Sanbo, Zhou Huan-Xiang

机构信息

Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, United States.

Department of Chemistry and Department of Physics, University of Illinois at Chicago, Chicago, IL, United States.

出版信息

Front Mol Biosci. 2019 May 29;6:39. doi: 10.3389/fmolb.2019.00039. eCollection 2019.

Abstract

The effects of macromolecular crowding on the thermodynamic properties of test proteins are determined by the latter's transfer free energies from a dilute solution to a crowded solution. The transfer free energies in turn are determined by effective protein-crowder interactions. When these interactions are modeled at the all-atom level, the transfer free energies may defy simple predictions. Here we investigated the dependence of the transfer free energy (Δμ) on crowder concentration. We represented both the test protein and the crowder proteins atomistically, and used a general interaction potential consisting of hard-core repulsion, non-polar attraction, and solvent-screened electrostatic terms. The chemical potential was rigorously calculated by FMAP (Qin and Zhou, 2014), which entails expressing the protein-crowder interaction terms as correlation functions and evaluating them via fast Fourier transform (FFT). To high accuracy, the transfer free energy can be decomposed into an excluded-volume component (Δμ), arising from the hard-core repulsion, and a soft-attraction component (Δμ), arising from non-polar and electrostatic interactions. The decomposition provides physical insight into crowding effects, in particular why such effects are very modest on protein folding stability. Further decomposition of Δμ into non-polar and electrostatic components does not work, because these two types of interactions are highly correlated in contributing to Δμ. We found that Δμ fits well to the generalized fundamental measure theory (Qin and Zhou, 2010), which accounts for atomic details of the test protein but approximates the crowder proteins as spherical particles. Most interestingly, Δμ has a nearly linear dependence on crowder concentration. The latter result can be understood within a perturbed virial expansion of Δμ (in powers of crowder concentration), with Δμ as reference. Whereas the second virial coefficient deviates strongly from that of the reference system, higher virial coefficients are close to their reference counterparts, thus leaving the linear term to make the dominant contribution to Δμ.

摘要

大分子拥挤对测试蛋白质热力学性质的影响由后者从稀溶液转移到拥挤溶液的自由能决定。而转移自由能又由有效的蛋白质-拥挤剂相互作用决定。当这些相互作用在全原子水平上建模时,转移自由能可能不符合简单的预测。在这里,我们研究了转移自由能(Δμ)对拥挤剂浓度的依赖性。我们对测试蛋白质和拥挤剂蛋白质都进行了原子水平的表示,并使用了一个由硬核排斥、非极性吸引和溶剂屏蔽静电项组成的一般相互作用势。化学势通过FMAP(Qin和Zhou,2014)严格计算,这需要将蛋白质-拥挤剂相互作用项表示为相关函数,并通过快速傅里叶变换(FFT)进行评估。为了达到高精度,转移自由能可以分解为一个由硬核排斥引起的排除体积分量(Δμ)和一个由非极性和静电相互作用引起的软吸引分量(Δμ)。这种分解为拥挤效应提供了物理见解,特别是为什么这些效应在蛋白质折叠稳定性上非常适度。将Δμ进一步分解为非极性和静电分量不起作用,因为这两种相互作用在对Δμ的贡献中高度相关。我们发现Δμ与广义基本度量理论(Qin和Zhou,2010)拟合得很好,该理论考虑了测试蛋白质的原子细节,但将拥挤剂蛋白质近似为球形颗粒。最有趣的是,Δμ对拥挤剂浓度几乎呈线性依赖。后一个结果可以在以Δμ为参考的Δμ的微扰维里展开(以拥挤剂浓度的幂次表示)中得到理解。虽然第二维里系数与参考系统有很大偏差,但更高阶的维里系数接近其参考对应项,因此线性项对Δμ起主要贡献。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb86/6549383/87d084abb70c/fmolb-06-00039-g0001.jpg

相似文献

1
Transfer Free Energies of Test Proteins Into Crowded Protein Solutions Have Simple Dependence on Crowder Concentration.
Front Mol Biosci. 2019 May 29;6:39. doi: 10.3389/fmolb.2019.00039. eCollection 2019.
3
Macromolecular crowding effects on coupled folding and binding.
J Phys Chem B. 2014 Nov 6;118(44):12621-9. doi: 10.1021/jp508046y. Epub 2014 Oct 23.

引用本文的文献

1
Calculating Structure Factors of Protein Solutions by Atomistic Modeling of Protein-Protein Interactions.
Physica A. 2024 Jun 15;644. doi: 10.1016/j.physa.2024.129844. Epub 2024 May 23.
2
Calculating Structure Factors of Protein Solutions by Atomistic Modeling of Protein-Protein Interactions.
bioRxiv. 2024 Mar 28:2024.03.27.587040. doi: 10.1101/2024.03.27.587040.
4
Crowded environments tune the fold-switching in metamorphic proteins.
Commun Chem. 2023 Jun 8;6(1):117. doi: 10.1038/s42004-023-00909-2.
6
Investigating molecular crowding during cell division and hyperosmotic stress in budding yeast with FRET.
Curr Top Membr. 2021;88:75-118. doi: 10.1016/bs.ctm.2021.09.001. Epub 2021 Nov 16.
7
Calculation of Second Virial Coefficients of Atomistic Proteins Using Fast Fourier Transform.
J Phys Chem B. 2019 Oct 3;123(39):8203-8215. doi: 10.1021/acs.jpcb.9b06808. Epub 2019 Sep 19.

本文引用的文献

2
Intrinsically Disordered Protein Exhibits Both Compaction and Expansion under Macromolecular Crowding.
Biophys J. 2018 Mar 13;114(5):1067-1079. doi: 10.1016/j.bpj.2018.01.011.
4
Fast Method for Computing Chemical Potentials and Liquid-Liquid Phase Equilibria of Macromolecular Solutions.
J Phys Chem B. 2016 Aug 25;120(33):8164-74. doi: 10.1021/acs.jpcb.6b01607. Epub 2016 Jul 5.
5
The macromolecular crowding effect--from in vitro into the cell.
Biol Chem. 2016 Jan;397(1):37-44. doi: 10.1515/hsz-2015-0161.
6
Crowding induced entropy-enthalpy compensation in protein association equilibria.
Phys Rev Lett. 2013 May 17;110(20):208102. doi: 10.1103/PhysRevLett.110.208102. Epub 2013 May 13.
8
Single-molecule spectroscopy reveals polymer effects of disordered proteins in crowded environments.
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4874-9. doi: 10.1073/pnas.1322611111. Epub 2014 Mar 17.
9
Self crowding of globular proteins studied by small-angle x-ray scattering.
Biophys J. 2014 Feb 18;106(4):895-904. doi: 10.1016/j.bpj.2013.12.004.
10
Impact of reconstituted cytosol on protein stability.
Proc Natl Acad Sci U S A. 2013 Nov 26;110(48):19342-7. doi: 10.1073/pnas.1312678110. Epub 2013 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验