Suppr超能文献

低阻力、同心栅极儿科人工肺治疗终末期肺衰竭。

Low-Resistance, Concentric-Gated Pediatric Artificial Lung for End-Stage Lung Failure.

机构信息

From the Extracorporeal Life Support Laboratory, Department of Surgery, University of Michigan, Ann Arbor, Michigan.

Department of Cardiovascular Engineering, Institute of Applied Medical Engineering, Helmholtz Institute, RWTH Aachen University, Aachen, Germany.

出版信息

ASAIO J. 2020 Apr;66(4):423-432. doi: 10.1097/MAT.0000000000001018.

Abstract

Children with end-stage lung failure awaiting lung transplant would benefit from improvements in artificial lung technology allowing for wearable pulmonary support as a bridge-to-transplant therapy. In this work, we designed, fabricated, and tested the Pediatric MLung-a dual-inlet hollow fiber artificial lung based on concentric gating, which has a rated flow of 1 L/min, and a pressure drop of 25 mm Hg at rated flow. This device and future iterations of the current design are designed to relieve pulmonary arterial hypertension, provide pulmonary support, reduce ventilator-associated injury, and allow for more effective therapy of patients with end-stage lung disease, including bridge-to-transplant treatment.

摘要

等待肺移植的终末期肺衰竭儿童将受益于人工肺技术的改进,以便在可穿戴的肺支持设备作为移植前桥接治疗。在这项工作中,我们设计、制造和测试了基于同心门控的儿科 MLung-双入口中空纤维人工肺,其额定流量为 1 L/min,在额定流量下的压降为 25 mm Hg。该设备和当前设计的未来迭代旨在缓解肺动脉高压,提供肺支持,减少呼吸机相关性损伤,并使更多患有终末期肺病的患者(包括移植前桥接治疗)能够得到更有效的治疗。

相似文献

1
Low-Resistance, Concentric-Gated Pediatric Artificial Lung for End-Stage Lung Failure.
ASAIO J. 2020 Apr;66(4):423-432. doi: 10.1097/MAT.0000000000001018.
2
Seven-day in vivo testing of a novel, low-resistance, pumpless pediatric artificial lung for long-term support.
J Pediatr Surg. 2022 Nov;57(11):614-623. doi: 10.1016/j.jpedsurg.2022.07.006. Epub 2022 Jul 13.
3
Artificial Lungs for Lung Failure: JACC Technology Corner.
J Am Coll Cardiol. 2018 Oct 2;72(14):1640-1652. doi: 10.1016/j.jacc.2018.07.049.
4
A Reduced Resistance, Concentric-Gated Artificial Membrane Lung for Pediatric End-Stage Lung Failure.
ASAIO J. 2025 Mar 1;71(3):254-262. doi: 10.1097/MAT.0000000000002308. Epub 2024 Sep 13.
6
Fiber Bundle Design for an Integrated Wearable Artificial Lung.
ASAIO J. 2017 Sep/Oct;63(5):631-636. doi: 10.1097/MAT.0000000000000542.
7
Development of an implantable artificial lung: challenges and progress.
ASAIO J. 2001 Jul-Aug;47(4):316-20. doi: 10.1097/00002480-200107000-00003.
8
Paracorporeal lung assist devices as a bridge to recovery or lung transplantation in neonates and young children.
J Thorac Cardiovasc Surg. 2014 Jan;147(1):420-6. doi: 10.1016/j.jtcvs.2013.08.078. Epub 2013 Nov 4.
9
Hemodynamic and gas transfer properties of a compliant thoracic artificial lung.
ASAIO J. 2005 Jul-Aug;51(4):404-11. doi: 10.1097/01.mat.0000169707.72242.8f.
10
Design and evaluation of a new, low pressure loss, implantable artificial lung.
ASAIO J. 1994 Jul-Sep;40(3):M522-6. doi: 10.1097/00002480-199407000-00055.

引用本文的文献

1
A Wearable Extracorporeal CO Removal System with a Closed-Loop Feedback.
Bioengineering (Basel). 2024 Sep 27;11(10):969. doi: 10.3390/bioengineering11100969.
2
A Reduced Resistance, Concentric-Gated Artificial Membrane Lung for Pediatric End-Stage Lung Failure.
ASAIO J. 2025 Mar 1;71(3):254-262. doi: 10.1097/MAT.0000000000002308. Epub 2024 Sep 13.
4
Artificial Lungs for Lung Failure in the Era of COVID-19 Pandemic: Contemporary Review.
Transplantation. 2023 Jun 1;107(6):1278-1285. doi: 10.1097/TP.0000000000004606. Epub 2023 May 23.
5
Seven-day in vivo testing of a novel, low-resistance, pumpless pediatric artificial lung for long-term support.
J Pediatr Surg. 2022 Nov;57(11):614-623. doi: 10.1016/j.jpedsurg.2022.07.006. Epub 2022 Jul 13.
6
A pumpless artificial lung without systemic anticoagulation: The Nitric Oxide Surface Anticoagulation system.
J Pediatr Surg. 2022 Jan;57(1):26-33. doi: 10.1016/j.jpedsurg.2021.09.015. Epub 2021 Sep 20.
7
Toward Development of a Higher Flow Rate Hemocompatible Biomimetic Microfluidic Blood Oxygenator.
Micromachines (Basel). 2021 Jul 28;12(8):888. doi: 10.3390/mi12080888.
9
Pediatric and neonatal extracorporeal life support: current state and continuing evolution.
Pediatr Surg Int. 2021 Jan;37(1):17-35. doi: 10.1007/s00383-020-04800-2. Epub 2021 Jan 1.
10
Advances in extracorporeal membrane oxygenator design for artificial placenta technology.
Artif Organs. 2021 Mar;45(3):205-221. doi: 10.1111/aor.13827. Epub 2020 Nov 4.

本文引用的文献

1
Acute In Vivo Evaluation of the Pittsburgh Pediatric Ambulatory Lung.
ASAIO J. 2019 May/Jun;65(4):395-400. doi: 10.1097/MAT.0000000000000918.
2
Effects of Pulsatile Blood Flow on Oxygenator Performance.
Artif Organs. 2018 Apr;42(4):410-419. doi: 10.1111/aor.13088. Epub 2018 Feb 13.
3
In Vitro Characterization of the Pittsburgh Pediatric Ambulatory Lung.
ASAIO J. 2018 Nov/Dec;64(6):806-811. doi: 10.1097/MAT.0000000000000711.
4
CO clearance by membrane lungs.
Perfusion. 2018 May;33(4):249-253. doi: 10.1177/0267659117736379. Epub 2017 Nov 1.
5
A Membrane Lung Design Based on Circular Blood Flow Paths.
ASAIO J. 2017 Sep/Oct;63(5):637-643. doi: 10.1097/MAT.0000000000000616.
6
OPTN/SRTR 2015 Annual Data Report: Lung.
Am J Transplant. 2017 Jan;17 Suppl 1:357-424. doi: 10.1111/ajt.14129.
10
Exploring Metrics to Express Energy Expenditure of Physical Activity in Youth.
PLoS One. 2015 Jun 23;10(6):e0130869. doi: 10.1371/journal.pone.0130869. eCollection 2015.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验