Suppr超能文献

迈向更高流速血液相容性仿生微流控血液氧合器的开发。

Toward Development of a Higher Flow Rate Hemocompatible Biomimetic Microfluidic Blood Oxygenator.

作者信息

Santos Jose, Vedula Else M, Lai Weixuan, Isenberg Brett C, Lewis Diana J, Lang Dan, Sutherland David, Roberts Teryn R, Harea George T, Wells Christian, Teece Bryan, Karandikar Paramesh, Urban Joseph, Risoleo Thomas, Gimbel Alla, Solt Derek, Leazer Sahar, Chung Kevin K, Sukavaneshvar Sivaprasad, Batchinsky Andriy I, Borenstein Jeffrey T

机构信息

Draper, Cambridge, MA 02139, USA.

Autonomous Reanimation and Evacuation (AREVA) Research Program, The Geneva Foundation, Brooks City Base, San Antonio, TX 78006, USA.

出版信息

Micromachines (Basel). 2021 Jul 28;12(8):888. doi: 10.3390/mi12080888.

Abstract

The recent emergence of microfluidic extracorporeal lung support technologies presents an opportunity to achieve high gas transfer efficiency and improved hemocompatibility relative to the current standard of care in extracorporeal membrane oxygenation (ECMO). However, a critical challenge in the field is the ability to scale these devices to clinically relevant blood flow rates, in part because the typically very low blood flow in a single layer of a microfluidic oxygenator device requires stacking of a logistically challenging number of layers. We have developed biomimetic microfluidic oxygenators for the past decade and report here on the development of a high-flow (30 mL/min) single-layer prototype, scalable to larger structures via stacking and assembly with blood distribution manifolds. Microfluidic oxygenators were designed with biomimetic in-layer blood distribution manifolds and arrays of parallel transfer channels, and were fabricated using high precision machined durable metal master molds and microreplication with silicone films, resulting in large area gas transfer devices. Oxygen transfer was evaluated by flowing 100% O at 100 mL/min and blood at 0-30 mL/min while monitoring increases in O partial pressures in the blood. This design resulted in an oxygen saturation increase from 65% to 95% at 20 mL/min and operation up to 30 mL/min in multiple devices, the highest value yet recorded in a single layer microfluidic device. In addition to evaluation of the device for blood oxygenation, a 6-h in vitro hemocompatibility test was conducted on devices ( = 5) at a 25 mL/min blood flow rate with heparinized swine donor blood against control circuits ( = 3). Initial hemocompatibility results indicate that this technology has the potential to benefit future applications in extracorporeal lung support technologies for acute lung injury.

摘要

与体外膜肺氧合(ECMO)的当前标准护理相比,微流控体外肺支持技术的最新出现为实现高气体传输效率和改善血液相容性提供了机会。然而,该领域的一个关键挑战是能否将这些设备扩大到临床相关的血流速率,部分原因是微流控氧合器设备单层中通常非常低的血流需要堆叠数量在后勤方面具有挑战性的层。在过去十年中,我们开发了仿生微流控氧合器,并在此报告一种高流量(30 mL/分钟)单层原型的开发情况,该原型可通过与血液分配歧管堆叠和组装扩展为更大的结构。微流控氧合器采用仿生层内血液分配歧管和平行传输通道阵列进行设计,并使用高精度加工的耐用金属母模和硅胶膜微复制制造,从而得到大面积气体传输设备。在以100 mL/分钟的流速通入100%氧气并以0 - 30 mL/分钟的流速通入血液的同时,通过监测血液中氧分压的增加来评估氧气传输。这种设计在20 mL/分钟时使氧饱和度从65%提高到95%,并且多个设备可在高达30 mL/分钟的流速下运行,这是单层微流控设备中记录到的最高值。除了对该设备进行血液氧合评估外,还对5个设备以25 mL/分钟的血流速率使用肝素化猪供体血液进行了6小时的体外血液相容性测试,并与3个对照回路进行了比较。初步血液相容性结果表明,该技术有可能使未来在急性肺损伤的体外肺支持技术中的应用受益。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验