Suppr超能文献

编码和非编码转录本的映射、组装及定量分析的计算方法

Computational Methods for Mapping, Assembly and Quantification for Coding and Non-coding Transcripts.

作者信息

Babarinde Isaac A, Li Yuhao, Hutchins Andrew P

机构信息

Department of Biology, Southern University of Science and Technology, 1088 Xueyuan Lu, Shenzhen, China.

出版信息

Comput Struct Biotechnol J. 2019 May 7;17:628-637. doi: 10.1016/j.csbj.2019.04.012. eCollection 2019.

Abstract

The measurement of gene expression has long provided significant insight into biological functions. The development of high-throughput short-read sequencing technology has revealed transcriptional complexity at an unprecedented scale, and informed almost all areas of biology. However, as researchers have sought to gather more insights from the data, these new technologies have also increased the computational analysis burden. In this review, we describe typical computational pipelines for RNA-Seq analysis and discuss their strengths and weaknesses for the assembly, quantification and analysis of coding and non-coding RNAs. We also discuss the assembly of transposable elements into transcripts, and the difficulty these repetitive elements pose. In summary, RNA-Seq is a powerful technology that is likely to remain a key asset in the biologist's toolkit.

摘要

长期以来,基因表达的测量为深入了解生物学功能提供了重要依据。高通量短读长测序技术的发展以前所未有的规模揭示了转录复杂性,并为几乎所有生物学领域提供了信息。然而,随着研究人员试图从数据中获取更多见解,这些新技术也增加了计算分析负担。在本综述中,我们描述了RNA测序分析的典型计算流程,并讨论了它们在编码和非编码RNA的组装、定量和分析方面的优缺点。我们还讨论了将转座元件组装成转录本的问题,以及这些重复元件带来的困难。总之,RNA测序是一项强大的技术,很可能仍然是生物学家工具包中的关键资产。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d668/6526290/aeeed0a081e0/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验