Long Chunhong, E Chao, Da Lin-Tai, Yu Jin
Beijing Computational Science Research Center, Beijing, 100193, China.
Shanghai Center for Systems Biomedicine, Shanghai JiaoTong University, Shanghai 200240, China.
Comput Struct Biotechnol J. 2019 May 9;17:638-644. doi: 10.1016/j.csbj.2019.05.001. eCollection 2019.
RNA polymerase (RNAP) from bacteriophage T7 is a representative single-subunit viral RNAP that can transcribe with high promoter activities without assistances from transcription factors. We accordingly studied this small transcription machine computationally as a model system to understand underlying mechanisms of mechano-chemical coupling and fidelity control in the RNAP transcription elongation. Here we summarize our computational work from several recent publications to demonstrate first how T7 RNAP translocates via Brownian alike motions along DNA right after the catalytic product release. Then we show how the backward translocation motions are prevented at post-translocation upon successful nucleotide incorporation, which is also subject to stepwise nucleotide selection and acts as a pawl for "selective ratcheting". The structural dynamics and energetics features revealed from our atomistic molecular dynamics (MD) simulations and related analyses on the single-subunit T7 RNAP thus provided detailed and quantitative characterizations on the Brownian-ratchet working scenario of a prototypical transcription machine with sophisticated nucleotide selectivity for fidelity control. The presented mechanisms can be more or less general for structurally similar viral or mitochondrial RNAPs and some of DNA polymerases, or even for the RNAP engine of the more complicated transcription machinery in higher organisms.
噬菌体T7的RNA聚合酶(RNAP)是一种典型的单亚基病毒RNAP,它可以在没有转录因子协助的情况下以高启动子活性进行转录。因此,我们将这个小型转录机器作为一个模型系统进行了计算研究,以了解RNAP转录延伸过程中机械化学偶联和保真度控制的潜在机制。在这里,我们总结了我们最近几篇出版物中的计算工作,首先展示了T7 RNAP在催化产物释放后如何通过类似布朗运动的方式沿着DNA进行易位。然后我们展示了在成功掺入核苷酸后,如何在易位后防止向后易位运动,这也涉及逐步的核苷酸选择,并作为“选择性棘轮”的棘爪。我们从原子分子动力学(MD)模拟和对单亚基T7 RNAP的相关分析中揭示的结构动力学和能量学特征,因此为具有复杂核苷酸选择性以进行保真度控制的典型转录机器的布朗棘轮工作场景提供了详细和定量的表征。所提出的机制对于结构相似的病毒或线粒体RNAP以及一些DNA聚合酶,甚至对于高等生物中更复杂转录机制的RNAP引擎,或多或少具有普遍性。