School of Medical Laboratory, Weifang Medical University, Weifang 261053, China.
Medicinal Chemistry and Bioinformatics Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.
Molecules. 2021 Sep 17;26(18):5647. doi: 10.3390/molecules26185647.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are recognized as the most frequent cause of Parkinson's disease (PD). As a multidomain ROCO protein, LRRK2 is characterized by the presence of both a Ras-of-complex (ROC) GTPase domain and a kinase domain connected through the C-terminal of an ROC domain (COR). The bienzymatic ROC-COR-kinase catalytic triad indicated the potential role of GTPase domain in regulating kinase activity. However, as a functional GTPase, the detailed intrinsic regulation of the ROC activation cycle remains poorly understood. Here, combining extensive molecular dynamics simulations and Markov state models, we disclosed the dynamic structural rearrangement of ROC's homodimer during nucleotide turnover. Our study revealed the coupling between dimerization extent and nucleotide-binding state, indicating a nucleotide-dependent dimerization-based activation scheme adopted by ROC GTPase. Furthermore, inspired by the well-known R1441C/G/H PD-relevant mutations within the ROC domain, we illuminated the potential allosteric molecular mechanism for its pathogenetic effects through enabling faster interconversion between inactive and active states, thus trapping ROC in a prolonged activated state, while the implicated allostery could provide further guidance for identification of regulatory allosteric pockets on the ROC complex. Our investigations illuminated the thermodynamics and kinetics of ROC homodimer during nucleotide-dependent activation for the first time and provided guidance for further exploiting ROC as therapeutic targets for controlling LRRK2 functionality in PD treatment.
LRRK2(富含亮氨酸重复激酶 2)突变被认为是帕金森病(PD)最常见的病因。作为一种多结构域 ROCO 蛋白,LRRK2 的特征是既有 Ras-of-complex(ROC)GTP 酶结构域,又有通过 ROC 结构域的 C 端连接的激酶结构域(COR)。双酶 ROC-COR-kinase 催化三联体表明 GTP 酶结构域在调节激酶活性方面的潜在作用。然而,作为一种功能性 GTP 酶,ROC 激活循环的详细内在调节仍知之甚少。在这里,我们结合广泛的分子动力学模拟和 Markov 状态模型,揭示了核苷酸转换过程中 ROC 同源二聚体的动态结构重排。我们的研究揭示了二聚体程度和核苷酸结合状态之间的耦合,表明 ROC GTP 酶采用了依赖核苷酸的二聚化激活方案。此外,受 ROC 结构域中与 PD 相关的 R1441C/G/H 突变的启发,我们通过启用更快速的无活性和活性状态之间的转换,阐明了其致病效应的潜在变构分子机制,从而将 ROC 困在延长的激活状态中,而所涉及的变构作用可以为识别 ROC 复合物上的调节变构口袋提供进一步的指导。我们的研究首次阐明了 ROC 同源二聚体在核苷酸依赖性激活过程中的热力学和动力学,并为进一步利用 ROC 作为治疗靶点来控制 LRRK2 功能以治疗 PD 提供了指导。