Rösener S, Chhatwal G S, Aktories K
Rudolf-Buchheim-Institut für Pharmakologie, Universität Giessen, FRG.
FEBS Lett. 1987 Nov 16;224(1):38-42. doi: 10.1016/0014-5793(87)80418-0.
Botulinum ADP-ribosyltransferase C3 modified 21-24 kDa proteins in a guanine nucleotide-dependent manner similar to that described for botulinum neurotoxin C1 and D. Whereas GTP and GTP gamma S stimulated C3-catalyzed ADP-ribosylation in the absence of Mg2+, in the presence of added Mg2+ ADP-ribosylation was impaired by GTP gamma S. C3 was about 1000-fold more potent than botulinum C1 neurotoxin in ADP-ribosylation of the 21-24 kDa protein(s) in human platelet membranes. Antibodies raised against C3 blocked ADP-ribosylation of the 21-24 kDa protein by C3 and neurotoxin C1 but neither cross reacted with neurotoxin C1 immunoblots nor neutralized the toxicity of neurotoxin C1 in mice. The data indicate that the ADP-ribosylation of low molecular mass GTP-binding proteins in various eukaryotic cells is not caused by botulinum neurotoxins but is due to the action of botulinum ADP-ribosyltransferase C3. The weak enzymatic activities described for botulinum neurotoxins appear to be due to the contamination of C1 and D preparations with ADP-ribosyltransferase C3.