Le-The Hai, Lozeman Jasper J A, Lafuente Marta, Muñoz Pablo, Bomer Johan G, Duy-Tong Hien, Berenschot Erwin, van den Berg Albert, Tas Niels R, Odijk Mathieu, Eijkel Jan C T
BIOS Lab-on-a-Chip Group, MESA+ Institute, Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands.
Nanoscience Institute of Aragon, Department of Chemical & Environmental Engineering, University of Zaragoza, 50018 Zaragoza, Spain.
Nanoscale. 2019 Jul 7;11(25):12152-12160. doi: 10.1039/c9nr02215e. Epub 2019 Jun 13.
We report a robust and high-yield fabrication method for wafer-scale patterning of high-quality arrays of dense gold nanogaps, combining displacement Talbot lithography based shrink-etching with dry etching, wet etching, and thin film deposition techniques. By using the self-sharpening of <111>-oriented silicon crystal planes during the wet etching process, silicon structures with extremely smooth nanogaps are obtained. Subsequent conformal deposition of a silicon nitride layer and a gold layer results in dense arrays of narrow gold nanogaps. Using this method, we successfully fabricate high-quality Au nanogaps down to 10 nm over full wafer areas. Moreover, the gap spacing can be tuned by changing the thickness of deposited Au layers. Since the roughness of the template is minimized by the crystallographic etching of silicon, the roughness of the gold nanogaps depends almost exclusively on the roughness of the sputtered gold layers. Additionally, our fabricated Au nanogaps show a significant enhancement of surface-enhanced Raman scattering (SERS) signals of benzenethiol molecules chemisorbed on the structure surface, at an average enhancement factor up to 1.5 × 10.
我们报告了一种用于高质量密集金纳米间隙阵列的晶圆级图案化的稳健且高产的制造方法,该方法将基于位移塔尔博特光刻的收缩蚀刻与干法蚀刻、湿法蚀刻和薄膜沉积技术相结合。通过在湿法蚀刻过程中利用<111>取向的硅晶面的自锐化,可获得具有极其光滑纳米间隙的硅结构。随后对氮化硅层和金层进行共形沉积,可得到密集的窄金纳米间隙阵列。使用这种方法,我们成功地在整个晶圆区域制造出低至10纳米的高质量金纳米间隙。此外,间隙间距可通过改变沉积金层的厚度来调节。由于通过硅的晶体蚀刻使模板的粗糙度最小化,金纳米间隙的粗糙度几乎完全取决于溅射金层的粗糙度。此外,我们制造的金纳米间隙对化学吸附在结构表面的苯硫醇分子的表面增强拉曼散射(SERS)信号有显著增强,平均增强因子高达1.5×10。