Department of Chemistry , University of Virginia , Charlottesville , Virginia 22904 , United States.
Anal Chem. 2019 Jul 2;91(13):8366-8373. doi: 10.1021/acs.analchem.9b01178. Epub 2019 Jun 13.
Histamine plays an important role in neuromodulation and the biological immune response. Although many electrochemical methods have been developed for histamine detection, the mechanism of its redox reaction has not been directly investigated. Here, we studied the mechanism of histamine oxidation at carbon electrodes and used that mechanistic information to design better fast-scan cyclic voltammetry (FSCV) methods for histamine. Using amperometry, cyclic voltammetry (CV), and X-ray photoelectron spectroscopy (XPS), we demonstrate that histamine oxidation requires a potential of at least +1.1 V vs Ag/AgCl. We propose that histamine undergoes one-electron oxidation on an imidazole nitrogen that produces a radical. The radical species dimerize and continue to undergo oxidation, leading to electropolymerization, which fouls the electrode. CV shows a peak at 1.3 V that is pH dependent, consistent with a one-proton, one-electron oxidation reaction. This mechanism is confirmed using 1- and 3-methylhistamine, which do not electropolymerize, compared to N-methylhistamine, which does. XPS also revealed a nitrogen-containing product adsorbed on the electrode surface after histamine oxidation. For FSCV detection of histamine at carbon-fiber microelectrodes, histamine oxidation was adsorption-controlled, and the anodic peak was observed at +1.2 V on the backward scan because of the rapid scan rate. However, the oxidation fouled the electrode and convoluted the FSCV temporal response; therefore, we implemented Nafion coating to alleviate the electrode fouling and preserve the time response of FSCV. Knowing the mechanism of histamine oxidation will facilitate design of better electrochemical methods for real-time monitoring of histamine.
组氨酸在神经调节和生物免疫反应中发挥着重要作用。尽管已经开发出许多用于检测组氨酸的电化学方法,但组氨酸的氧化还原反应机制尚未得到直接研究。在这里,我们研究了组氨酸在碳电极上的氧化机制,并利用该机制信息设计了更好的快速扫描循环伏安法(FSCV)方法来检测组氨酸。我们使用电流测定法、循环伏安法(CV)和 X 射线光电子能谱(XPS)证明了组氨酸氧化需要至少 +1.1 V 相对于 Ag/AgCl 的电势。我们提出组氨酸在咪唑氮上发生单电子氧化,产生自由基。自由基二聚化并继续发生氧化,导致电聚合,从而使电极受到污染。CV 在 1.3 V 处显示出一个与 pH 相关的峰,与一个质子和一个电子的氧化反应一致。使用 1-和 3-甲基组氨酸(它们不发生电聚合)与 N-甲基组氨酸(它们发生电聚合)相比,证实了这种机制。XPS 还揭示了组氨酸氧化后吸附在电极表面的含氮产物。对于碳纤维微电极上组氨酸的 FSCV 检测,组氨酸氧化是受吸附控制的,由于快速扫描速率,在反向扫描时在 +1.2 V 处观察到阳极峰。然而,氧化会使电极受到污染并使 FSCV 的时间响应变得复杂;因此,我们实施了 Nafion 涂层以减轻电极污染并保持 FSCV 的时间响应。了解组氨酸氧化的机制将有助于设计更好的电化学方法来实时监测组氨酸。