Department of Chemistry , Yale University , 225 Prospect Street , New Haven , Connecticut 06520 , United States.
Energy Sciences Institute , Yale University , 810 West Campus Drive , West Haven , Connecticut 06516 , United States.
J Phys Chem B. 2019 Jul 11;123(27):5769-5781. doi: 10.1021/acs.jpcb.9b04029. Epub 2019 Jun 27.
A parallel study of protein variants with all (l-), all (d-), or mixed (l-)/(d-) amino acids can be used to assess how backbone architecture versus side chain identity determines protein structure. Here, we investigate the secondary structure and side chain orientation dynamics of the antiparallel β-sheet peptide LKβ (Ac-Leu-Lys-Leu-Lys-Leu-Lys-Leu-NH) composed of all (l-), all (d-), or alternating (l-Leu)/(d-Lys) amino acids. Using interface-selective vibrational sum frequency generation spectroscopy (VSFG), we observe that the alternating (l-)/(d-) peptide lacks a resonant C-H stretching mode compared to the (l-) and (d-) variants and does not form antiparallel β-sheets. We rationalize our observations on the basis of density functional theory calculations and molecular dynamics (MD) simulations of LKβ at the air-water interface. Irrespective of the handedness of the amino acids, leucine side chains prefer to orient toward the hydrophobic air phase while lysine side chains prefer the hydrophilic water phase. These preferences dictate the backbone configuration of LKβ and thereby the folding of the peptide. Our MD simulations show that the preferred side chain orientations can force the backbone of a single strand of (l-) LKβ at the air-water interface to adopt β-sheet Ramachandran angles. However, denaturation of the β-sheets at pH = 2 results in a negligible chiral VSFG amide I response. The combined computational and experimental results lend critical support to the theory that a chiral VSFG response requires macroscopic chirality, such as in β-sheets. Our results can guide expectations about the VSFG optical responses of proteins and should improve understanding of how amino acid chirality modulates the structure and function of natural and proteins at biological interfaces.
一种可用于评估主链结构与侧链特征决定蛋白质结构的方法是研究所有(L-)、所有(D-)或混合(L-)/(D-)氨基酸的蛋白质变体。在这里,我们研究了由全(L-)、全(D-)或交替(L-Leu)/(D-Lys)氨基酸组成的反平行β-折叠肽 LKβ(Ac-Leu-Lys-Leu-Lys-Leu-Lys-Leu-NH)的二级结构和侧链取向动力学。通过界面选择性振动和频产生光谱(VSFG),我们发现与(L-)和(D-)变体相比,交替(L-)/(D-)肽缺乏共振 C-H 伸缩模式,并且不形成反平行β-折叠。我们根据在空气-水界面处 LKβ 的密度泛函理论计算和分子动力学(MD)模拟来解释我们的观察结果。无论氨基酸的手性如何,亮氨酸侧链都倾向于朝向疏水性空气相,而赖氨酸侧链则倾向于亲水性水相。这些偏好决定了 LKβ 的主链构型,从而决定了肽的折叠。我们的 MD 模拟表明,优选的侧链取向可以迫使空气-水界面上单链(L-)LKβ 的主链采用β-折叠 Ramachandran 角。然而,在 pH = 2 时β-折叠的变性导致可忽略的手性 VSFG 酰胺 I 响应。计算和实验结果的综合结果有力地支持了这样一种理论,即手性 VSFG 响应需要宏观手性,例如在β-折叠中。我们的结果可以指导对蛋白质的 VSFG 光学响应的期望,并应提高对手性氨基酸如何调节生物界面中天然和合成蛋白质的结构和功能的理解。