Institute of Experimental Cardiology (M.K., M.D., J.G., U.O., L.H.L., J.B.), Heidelberg University, Germany.
Department of Cardiology (M.K., L.H.L., O.J.M., H.A.K.), Heidelberg University, Germany.
Circulation. 2019 Aug 13;140(7):580-594. doi: 10.1161/CIRCULATIONAHA.117.031942. Epub 2019 Jun 14.
Worldwide, diabetes mellitus and heart failure represent frequent comorbidities with high socioeconomic impact and steadily growing incidence, calling for a better understanding of how diabetic metabolism promotes cardiac dysfunction. Paradoxically, some glucose-lowering drugs have been shown to worsen heart failure, raising the question of how glucose mediates protective versus detrimental cardiac signaling. Here, we identified a histone deacetylase 4 (HDAC4) subdomain as a molecular checkpoint of adaptive and maladaptive signaling in the diabetic heart.
A conditional HDAC4 allele was used to delete HDAC4 specifically in cardiomyocytes (HDAC4-knockout). Mice were subjected to diabetes mellitus either by streptozotocin injections (type 1 diabetes mellitus model) or by crossing into mice carrying a leptin receptor mutation (db/db; type 2 diabetes mellitus model) and monitored for remodeling and cardiac function. Effects of glucose and the posttranslational modification by β-linked N-acetylglucosamine (O-GlcNAc) on HDAC4 were investigated in vivo and in vitro by biochemical and cellular assays.
We show that the cardio-protective N-terminal proteolytic fragment of HDAC4 is enhanced in vivo in patients with diabetes mellitus and mouse models, as well as in vitro under high-glucose and high-O-GlcNAc conditions. HDAC4-knockout mice develop heart failure in models of type 1 and type 2 diabetes mellitus, whereas wild-type mice do not develop clear signs of heart failure, indicating that HDAC4 protects the diabetic heart. Reexpression of the N-terminal fragment of HDAC4 prevents HDAC4-dependent diabetic cardiomyopathy. Mechanistically, the posttranslational modification of HDAC4 at serine (Ser)-642 by O-GlcNAcylation is an essential step for production of the N-terminal fragment of HDAC4, which was attenuated by Ca/calmodulin-dependent protein kinase II-mediated phosphorylation at Ser-632. Preventing O-GlcNAcylation at Ser-642 not only entirely precluded production of the N-terminal fragment of HDAC4 but also promoted Ca/calmodulin-dependent protein kinase II-mediated phosphorylation at Ser-632, pointing to a mutual posttranslational modification cross talk of (cardio-detrimental) phosphorylation at Ser-632 and (cardio-protective) O-GlcNAcylation at Ser-642.
In this study, we found that O-GlcNAcylation of HDAC4 at Ser-642 is cardio-protective in diabetes mellitus and counteracts pathological Ca/calmodulin-dependent protein kinase II signaling. We introduce a molecular model explaining how diabetic metabolism possesses important cardio-protective features besides its known detrimental effects. A deeper understanding of the here-described posttranslational modification cross talk may lay the groundwork for the development of specific therapeutic concepts to treat heart failure in the context of diabetes mellitus.
在全球范围内,糖尿病和心力衰竭是常见的合并症,具有较高的社会经济影响和不断增加的发病率,因此需要更好地了解糖尿病代谢如何促进心脏功能障碍。矛盾的是,一些降血糖药物已被证明会使心力衰竭恶化,这就提出了一个问题,即葡萄糖如何介导保护性和有害性的心脏信号。在这里,我们确定了组蛋白去乙酰化酶 4(HDAC4)的一个亚结构域作为糖尿病心脏中适应性和失调性信号的分子检查点。
使用条件性 HDAC4 等位基因特异性删除心肌细胞中的 HDAC4(HDAC4 敲除)。通过链脲佐菌素注射(1 型糖尿病模型)或与携带瘦素受体突变的小鼠杂交(db/db;2 型糖尿病模型)使小鼠发生糖尿病,并监测其重塑和心脏功能。通过生化和细胞测定法在体内和体外研究葡萄糖和由β-连接的 N-乙酰葡萄糖胺(O-GlcNAc)进行的翻译后修饰对 HDAC4 的影响。
我们表明,糖尿病患者和小鼠模型中的 HDAC4 的保护性 N 端蛋白水解片段在体内增强,并且在高葡萄糖和高-O-GlcNAc 条件下体外增强。HDAC4 敲除小鼠在 1 型和 2 型糖尿病模型中会发生心力衰竭,而野生型小鼠则不会出现明显的心力衰竭迹象,这表明 HDAC4 可保护糖尿病心脏。HDAC4 的 N 端片段的再表达可防止 HDAC4 依赖性糖尿病心肌病。从机制上讲,由 O-GlcNAc 修饰在丝氨酸(Ser)-642 上的 HDAC4 的翻译后修饰是产生 HDAC4 的 N 端片段的必要步骤,而 Ca/钙调蛋白依赖性蛋白激酶 II 在 Ser-632 上的磷酸化则削弱了该步骤。阻止 Ser-642 上的 O-GlcNAc 修饰不仅完全阻止了 HDAC4 的 N 端片段的产生,而且还促进了 Ca/钙调蛋白依赖性蛋白激酶 II 在 Ser-632 上的磷酸化,表明(心脏有害的)磷酸化在 Ser-632 处和(心脏保护性)O-GlcNAc 化在 Ser-642 处的相互翻译后修饰交叉对话。
在这项研究中,我们发现 HDAC4 上 Ser-642 的 O-GlcNAc 化在糖尿病中具有心脏保护作用,并抵消了病理性 Ca/钙调蛋白依赖性蛋白激酶 II 信号。我们引入了一个分子模型,解释了糖尿病代谢如何除了具有已知的有害作用外,还具有重要的心脏保护作用。对本文所述的翻译后修饰交叉对话的更深入了解可能为开发专门针对糖尿病背景下心力衰竭的治疗概念奠定基础。