Suppr超能文献

比较老年人女性体力活动的加速度分析方法及其与随时间变化的健康结果的关联。

A comparison of accelerometry analysis methods for physical activity in older adult women and associations with health outcomes over time.

机构信息

a Department of Family Medicine and Public Health, San Diego State University , San Diego , CA , USA.

b Department of Family Medicine and Public Health, University of California , San Diego , USA.

出版信息

J Sports Sci. 2019 Oct;37(20):2309-2317. doi: 10.1080/02640414.2019.1631080. Epub 2019 Jun 14.

Abstract

This study compared five different methods for analyzing accelerometer-measured physical activity (PA) in older adults and assessed the relationship between changes in PA and changes in physical function and depressive symptoms for each method. Older adult females (N = 144, M = 83.3 ± 6.4yrs) wore hip accelerometers for six days and completed measures of physical function and depressive symptoms at baseline and six months. Accelerometry data were processed by five methods to estimate PA: 1041 vertical axis cut-point, 15-second vector magnitude (VM) cut-point, 1-second VM algorithm (Activity Index (AI)), machine learned walking algorithm, and individualized cut-point derived from a 400-meter walk. Generalized estimating equations compared PA minutes across methods and showed significant differences between some methods but not others; methods estimated 6-month changes in PA ranging from 4 minutes to over 20 minutes. Linear mixed models for each method tested associations between changes in PA and health. All methods, except the individualized cut-point, had a significant relationship between change in PA and improved physical function and depressive symptoms. This study is among the first to compare accelerometry processing methods and their relationship to health. It is important to recognize the differences in PA estimates and relationship to health outcomes based on data processing method. : Machine Learning (ML); Short Physical Performance Battery (SPPB); Center of Epidemiologic Studies Depression Scale (CES-D); Physical Activity (PA); Activity Index (AI); Activities of Daily Living (ADL).

摘要

本研究比较了五种不同的方法来分析老年人的加速度计测量的身体活动(PA),并评估了每种方法中 PA 变化与身体功能和抑郁症状变化之间的关系。老年女性(N=144,M=83.3±6.4 岁)佩戴髋部加速度计六天,并在基线和六个月时完成身体功能和抑郁症状的测量。使用五种方法处理加速度计数据来估计 PA:1041 个垂直轴切点、15 秒向量幅度(VM)切点、1 秒 VM 算法(活动指数(AI))、机器学习步行算法和从 400 米步行中得出的个性化切点。广义估计方程比较了不同方法之间的 PA 分钟数,并显示了一些方法之间的显著差异,但其他方法则没有;方法估计 6 个月 PA 的变化范围从 4 分钟到 20 多分钟不等。每种方法的线性混合模型都测试了 PA 变化与健康之间的关系。除了个性化切点之外,所有方法都与 PA 变化和身体功能改善以及抑郁症状之间存在显著关系。本研究是首批比较加速度计处理方法及其与健康关系的研究之一。根据数据处理方法,认识到 PA 估计值和与健康结果的关系存在差异非常重要。

相似文献

1
A comparison of accelerometry analysis methods for physical activity in older adult women and associations with health outcomes over time.
J Sports Sci. 2019 Oct;37(20):2309-2317. doi: 10.1080/02640414.2019.1631080. Epub 2019 Jun 14.
2
Comparison of Accelerometry Methods for Estimating Physical Activity.
Med Sci Sports Exerc. 2017 Mar;49(3):617-624. doi: 10.1249/MSS.0000000000001124.
4
Individual Scaling of Accelerometry to Preferred Walking Speed in the Assessment of Physical Activity in Older Adults.
J Gerontol A Biol Sci Med Sci. 2020 Sep 16;75(9):e111-e118. doi: 10.1093/gerona/glaa142.
5
Hip and Wrist Accelerometer Algorithms for Free-Living Behavior Classification.
Med Sci Sports Exerc. 2016 May;48(5):933-40. doi: 10.1249/MSS.0000000000000840.
7
Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy.
J Neuroeng Rehabil. 2018 Nov 15;15(1):105. doi: 10.1186/s12984-018-0456-x.
10
Physical Activity Change in an RCT: Comparison of Measurement Methods.
Am J Health Behav. 2019 May 1;43(3):543-555. doi: 10.5993/AJHB.43.3.9.

引用本文的文献

1
Data Analytics in Physical Activity Studies With Accelerometers: Scoping Review.
J Med Internet Res. 2024 Sep 11;26:e59497. doi: 10.2196/59497.
2

本文引用的文献

2
Physical Activity and Changes in Health Care Costs in Late Middle Age.
J Phys Act Health. 2006 Feb;3(s1):S6-S19. doi: 10.1123/jpah.3.s1.s6.
3
Accelerometer-Measured Moderate to Vigorous Physical Activity and Incidence Rates of Falls in Older Women.
J Am Geriatr Soc. 2017 Nov;65(11):2480-2487. doi: 10.1111/jgs.14960. Epub 2017 Jul 29.
4
Classifiers for Accelerometer-Measured Behaviors in Older Women.
Med Sci Sports Exerc. 2017 Mar;49(3):610-616. doi: 10.1249/MSS.0000000000001121.
5
The Objective Physical Activity and Cardiovascular Disease Health in Older Women (OPACH) Study.
BMC Public Health. 2017 Feb 14;17(1):192. doi: 10.1186/s12889-017-4065-6.
6
Actigraphy features for predicting mobility disability in older adults.
Physiol Meas. 2016 Oct;37(10):1813-1833. doi: 10.1088/0967-3334/37/10/1813. Epub 2016 Sep 21.
7
An Activity Index for Raw Accelerometry Data and Its Comparison with Other Activity Metrics.
PLoS One. 2016 Aug 11;11(8):e0160644. doi: 10.1371/journal.pone.0160644. eCollection 2016.
8
Evaluating Walking Intensity with Hip-Worn Accelerometers in Elders.
Med Sci Sports Exerc. 2016 Nov;48(11):2216-2221. doi: 10.1249/MSS.0000000000001018.
10
Analysis and Interpretation of Accelerometry Data in Older Adults: The LIFE Study.
J Gerontol A Biol Sci Med Sci. 2016 Apr;71(4):521-8. doi: 10.1093/gerona/glv204. Epub 2015 Oct 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验