Suppr超能文献

DNN-Dom:通过深度神经网络仅从序列预测蛋白质结构域边界。

DNN-Dom: predicting protein domain boundary from sequence alone by deep neural network.

机构信息

School of Software Engineering and College of Life Science & Technology, Huazhong University of Science and Technology, Wuhan 430074, China.

出版信息

Bioinformatics. 2019 Dec 15;35(24):5128-5136. doi: 10.1093/bioinformatics/btz464.

Abstract

MOTIVATION

Accurate delineation of protein domain boundary plays an important role for protein engineering and structure prediction. Although machine-learning methods are widely used to predict domain boundary, these approaches often ignore long-range interactions among residues, which have been proven to improve the prediction performance. However, how to simultaneously model the local and global interactions to further improve domain boundary prediction is still a challenging problem.

RESULTS

This article employs a hybrid deep learning method that combines convolutional neural network and gate recurrent units' models for domain boundary prediction. It not only captures the local and non-local interactions, but also fuses these features for prediction. Additionally, we adopt balanced Random Forest for classification to deal with high imbalance of samples and high dimensions of deep features. Experimental results show that our proposed approach (DNN-Dom) outperforms existing machine-learning-based methods for boundary prediction. We expect that DNN-Dom can be useful for assisting protein structure and function prediction.

AVAILABILITY AND IMPLEMENTATION

The method is available as DNN-Dom Server at http://isyslab.info/DNN-Dom/.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

准确划定蛋白质结构域边界对于蛋白质工程和结构预测至关重要。尽管机器学习方法广泛用于预测结构域边界,但这些方法往往忽略了残基之间的长程相互作用,而这些相互作用已被证明可以提高预测性能。然而,如何同时对局部和全局相互作用进行建模,以进一步提高结构域边界预测仍然是一个具有挑战性的问题。

结果

本文采用了一种混合深度学习方法,该方法结合了卷积神经网络和门控循环单元模型,用于结构域边界预测。它不仅可以捕获局部和非局部相互作用,还可以融合这些特征进行预测。此外,我们采用平衡随机森林进行分类,以处理样本高度不平衡和深度特征高维的问题。实验结果表明,我们提出的方法(DNN-Dom)在边界预测方面优于现有的基于机器学习的方法。我们期望 DNN-Dom 可以为辅助蛋白质结构和功能预测提供有用的信息。

可用性和实现

该方法可作为 DNN-Dom 服务器在 http://isyslab.info/DNN-Dom/ 使用。

补充信息

补充数据可在 Bioinformatics 在线获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验