Zhao Lin, Bhatia Bikram, Yang Sungwoo, Strobach Elise, Weinstein Lee A, Cooper Thomas A, Chen Gang, Wang Evelyn N
Department of Mechanical Engineering , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States.
ACS Nano. 2019 Jul 23;13(7):7508-7516. doi: 10.1021/acsnano.9b02976. Epub 2019 Jun 14.
Heat at intermediate temperatures (120-220 °C) is in significant demand in both industrial and domestic sectors for applications such as water and space heating, steam generation, sterilization, and other industrial processes. Harnessing heat from solar energy at these temperatures, however, requires costly optical and mechanical components to concentrate the dilute solar flux and suppress heat losses. Thus, achieving high temperatures under unconcentrated sunlight remains a technological challenge as well as an opportunity for utilizing solar thermal energy. In this work, we demonstrate a solar receiver capable of reaching over 265 °C under ambient conditions without optical concentration. The high temperatures are achieved by leveraging an artificial greenhouse effect within an optimized monolithic silica aerogel to reduce heat losses while maintaining high solar transparency. This study demonstrates a viable path to promote cost-effective solar thermal energy at intermediate temperatures.
中温(120 - 220°C)热量在工业和家庭领域都有巨大需求,可用于水加热、空间供暖、蒸汽产生、杀菌及其他工业过程等应用。然而,在这些温度下利用太阳能获取热量需要昂贵的光学和机械部件来聚集稀薄的太阳辐射通量并抑制热损失。因此,在非聚光阳光下实现高温仍是一项技术挑战,同时也是利用太阳能热能的一个机遇。在这项工作中,我们展示了一种太阳能接收器,它能够在环境条件下且无需光学聚光的情况下达到265°C以上的温度。通过在优化的整体式二氧化硅气凝胶内利用人工温室效应来减少热损失,同时保持高太阳透明度,从而实现了高温。本研究展示了一条在中温下推广具有成本效益的太阳能热能的可行途径。