Suppr超能文献

状态、身份和语言:GitHub 中的问题讨论研究。

Status, identity, and language: A study of issue discussions in GitHub.

机构信息

Department of Computer Science, University of California Davis, Davis, California, United States of America.

出版信息

PLoS One. 2019 Jun 14;14(6):e0215059. doi: 10.1371/journal.pone.0215059. eCollection 2019.

Abstract

Successful open source software (OSS) projects comprise freely observable, task-oriented social networks with hundreds or thousands of participants and large amounts of (textual and technical) discussion. The sheer volume of interactions and participants makes it challenging for participants to find relevant tasks, discussions and people. Tagging (e.g., @AmySmith) is a socio-technical practice that enables more focused discussion. By tagging important and relevant people, discussions can be advanced more effectively. However, for all but a few insiders, it can be difficult to identify important and/or relevant people. In this paper we study tagging in OSS projects from a socio-linguistics perspective. First we argue that textual content per se reveals a great deal about the status and identity of who is speaking and who is being addressed. Next, we suggest that this phenomenon can be usefully modeled using modern deep-learning methods. Finally, we illustrate the value of these approaches with tools that could assist people to find the important and relevant people for a discussion.

摘要

成功的开源软件 (OSS) 项目包含可自由观察的、面向任务的社交网络,其中有数百甚至数千名参与者和大量的(文本和技术)讨论。交互和参与者的数量之大,使得参与者很难找到相关的任务、讨论和人员。标签(例如,@AmySmith)是一种社会技术实践,可实现更有针对性的讨论。通过标记重要和相关的人员,可以更有效地推进讨论。但是,除了少数内部人士之外,对于其他人来说,很难确定重要和/或相关的人员。在本文中,我们从社会语言学的角度研究 OSS 项目中的标签。首先,我们认为文本内容本身揭示了很多关于说话者和被称呼者的地位和身份的信息。接下来,我们建议可以使用现代深度学习方法来对这种现象进行建模。最后,我们通过可以帮助人们找到讨论中重要和相关人员的工具来说明这些方法的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2edc/6568400/f531874a6cc9/pone.0215059.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验