Suppr超能文献

基于脑电图形状特征的P300检测

P300 Detection Based on EEG Shape Features.

作者信息

Alvarado-González Montserrat, Garduño Edgar, Bribiesca Ernesto, Yáñez-Suárez Oscar, Medina-Bañuelos Verónica

机构信息

Graduate Program in Computer Science and Engineering, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.

Department of Computer Science, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.

出版信息

Comput Math Methods Med. 2016;2016:2029791. doi: 10.1155/2016/2029791. Epub 2016 Jan 10.

Abstract

We present a novel approach to describe a P300 by a shape-feature vector, which offers several advantages over the feature vector used by the BCI2000 system. Additionally, we present a calibration algorithm that reduces the dimensionality of the shape-feature vector, the number of trials, and the electrodes needed by a Brain Computer Interface to accurately detect P300s; we also define a method to find a template that best represents, for a given electrode, the subject's P300 based on his/her own acquired signals. Our experiments with 21 subjects showed that the SWLDA's performance using our shape-feature vector was 93%, that is, 10% higher than the one obtained with BCI2000-feature's vector. The shape-feature vector is 34-dimensional for every electrode; however, it is possible to significantly reduce its dimensionality while keeping a high sensitivity. The validation of the calibration algorithm showed an averaged area under the ROC (AUROC) curve of 0.88. Also, most of the subjects needed less than 15 trials to have an AUROC superior to 0.8. Finally, we found that the electrode C4 also leads to better classification.

摘要

我们提出了一种通过形状特征向量来描述P300的新方法,该方法相对于BCI2000系统所使用的特征向量具有多个优势。此外,我们还提出了一种校准算法,该算法可降低形状特征向量的维度、减少脑机接口准确检测P300所需的试验次数和电极数量;我们还定义了一种方法,用于根据给定电极上受试者自身采集的信号找到最能代表其P300的模板。我们对21名受试者进行的实验表明,使用我们的形状特征向量时,SWLDA的性能为93%,即比使用BCI2000特征向量时获得的性能高10%。每个电极的形状特征向量为34维;然而,在保持高灵敏度的同时,可以显著降低其维度。校准算法的验证显示,ROC曲线下的平均面积(AUROC)为0.88。此外,大多数受试者只需进行少于15次试验就能使AUROC优于0.8。最后,我们发现电极C4也能带来更好的分类效果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6dc6/4736976/b83fc1720b59/CMMM2016-2029791.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验