Suppr超能文献

具有CuO和Ag纳米颗粒修饰的ZnO纳米棒的柔性光催化纸用于有机染料的可见光光降解

Flexible Photocatalytic Paper with CuO and Ag Nanoparticle-Decorated ZnO Nanorods for Visible Light Photodegradation of Organic Dye.

作者信息

Tsai Cheng-En, Yeh Shang-Ming, Chen Chien-Hua, Lin Heh-Nan

机构信息

Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.

出版信息

Nanoscale Res Lett. 2019 Jun 14;14(1):204. doi: 10.1186/s11671-019-3034-7.

Abstract

We report on the fabrication of flexible photocatalytic paper comprised of CuO and Ag nanoparticle (NP)-decorated ZnO nanorods (NRs) and its application in visible light photodegradation of organic dye. ZnO NRs are first grown on a kraft paper substrate using a hydrothermal method. The NRs are subsequently decorated with CuO, Ag, or both NPs formed by photoreduction processes. Scanning electron microscopy and X-ray diffraction analysis confirm the crystallinity of ZnO NRs. Transmission electron microscopy analysis confirms the compositions of the two types of NPs. Four different types of photocatalytic papers with a size of 10 × 10 cm are prepared and used to degrade a 10-μM and 100-mL rhodamine B solution. The paper with CuO and Ag NP-co-decorated ZnO NRs has the best efficiency with first-order kinetic constants of 0.017 and 0.041 min under the illumination of a halogen lamp and direct sunlight, respectively. The performance of the photocatalytic paper compares well with other substrate-supported ZnO nanocomposite photocatalysts. With the advantages of flexibility, light weight, nontoxicity, low cost, and ease of fabrication, the photocatalytic paper has good potential for visible light photocatalysis.

摘要

我们报道了由氧化铜(CuO)和银纳米颗粒(NP)修饰的氧化锌纳米棒(NR)组成的柔性光催化纸的制备及其在可见光下对有机染料的光降解应用。首先采用水热法在牛皮纸基底上生长氧化锌纳米棒。随后,通过光还原过程形成的氧化铜、银或两者的纳米颗粒对纳米棒进行修饰。扫描电子显微镜和X射线衍射分析证实了氧化锌纳米棒的结晶性。透射电子显微镜分析证实了两种纳米颗粒的组成。制备了四种尺寸为10×10 cm的不同类型光催化纸,并用于降解10 μM、100 mL的罗丹明B溶液。在卤素灯和直射阳光照射下,氧化铜和银纳米颗粒共修饰的氧化锌纳米棒的光催化纸效率最高,一级动力学常数分别为0.017和0.041 min。该光催化纸的性能与其他基底负载的氧化锌纳米复合光催化剂相比具有优势。该光催化纸具有柔韧性、重量轻、无毒、成本低和易于制备等优点,在可见光光催化方面具有良好的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b5cd/6570720/1a91161af4c3/11671_2019_3034_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验