Suppr超能文献

揭示表面附着的银纳米颗粒在ZnO-Ag纳米棒提高罗丹明B光降解性能中的作用。

Uncovering the Role of Surface-Attached Ag Nanoparticles in Photodegradation Improvement of Rhodamine B by ZnO-Ag Nanorods.

作者信息

Em Svetlana, Yedigenov Mussa, Khamkhash Laura, Atabaev Shanazar, Molkenova Anara, Poulopoulos Stavros G, Atabaev Timur Sh

机构信息

Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Kazakhstan.

Department of Professional Disciplines, Academy of the Ministry of Emergency Situations, Tashkent 100102, Uzbekistan.

出版信息

Nanomaterials (Basel). 2022 Aug 22;12(16):2882. doi: 10.3390/nano12162882.

Abstract

ZnO nanorods decorated with metal nanoparticles have sparked considerable interest in recent years thanks to their suitability for a wide range of applications, such as photocatalysis, photovoltaics, antibacterial activity, and sensing devices. In this study, we prepared and investigated the improved solar-light-assisted photocatalytic activity of ZnO nanorods (NRs) decorated with Ag nanoparticles (NPs) using a conventional rhodamine B (RB) dye as a model water pollutant. We showed that the presence of Ag NPs on the surface of ZnO NRs significantly increases the degradation rate of RB dye (0.2432 min) when compared to bare ZnO NRs (0.0431 min). The improved photocatalytic activity of ZnO-Ag was further experimentally tested using radical scavengers. The obtained results reveal that OH and O radicals are main active species involved in the RB dye photodegradation by ZnO-Ag NRs. It was concluded that efficient charge separation plays a major role in photocatalytic activity improvement.

摘要

近年来,金属纳米颗粒修饰的氧化锌纳米棒因其适用于广泛的应用领域,如光催化、光伏、抗菌活性和传感设备等,而引起了人们的极大兴趣。在本研究中,我们以传统的罗丹明B(RB)染料作为模拟水污染物,制备并研究了银纳米颗粒(NPs)修饰的氧化锌纳米棒(NRs)在太阳光辅助下的光催化活性增强情况。我们发现,与未修饰的氧化锌纳米棒(降解速率约为0.0431分钟)相比,银纳米颗粒存在于氧化锌纳米棒表面时,能显著提高RB染料的降解速率(约为0.2432分钟)。我们还使用自由基清除剂对氧化锌-银复合材料的光催化活性增强效果进行了进一步的实验测试。结果表明,羟基自由基(OH)和氧自由基(O)是氧化锌-银纳米棒光催化降解RB染料过程中的主要活性物种。研究得出结论,有效的电荷分离在光催化活性的提高中起着主要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a67f/9412419/808f2cbd8ae1/nanomaterials-12-02882-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验