Suppr超能文献

多水平随机检验程序在单病例相设计中的水平、趋势、变异性、重叠、及时性和一致性。

A multiple randomization testing procedure for level, trend, variability, overlap, immediacy, and consistency in single-case phase designs.

机构信息

Faculty of Psychology and Educational Sciences, Methodology of Educational Sciences Research Group, KU Leuven - University of Leuven, Leuven, Belgium.

出版信息

Behav Res Ther. 2019 Aug;119:103414. doi: 10.1016/j.brat.2019.103414. Epub 2019 Jun 5.

Abstract

We present an approach to draw multiple and powerful inferences for each data aspect of single-case ABAB phase designs: level, trend, variability, overlap, immediacy, and consistency of data patterns. We show step-by-step how effect size measures can be calculated for each data aspect and subsequently integrated as test statistics in multiple randomization tests. To control for Type I errors, we discuss three methods for adjusting the obtained p-values based on the false discovery rate: the multiple testing correction proposed by Benjamini and Hochberg (1995), the adaptive correction suggested by Benjamini and Hochberg (2000), and the correction taking into account the dependency between the tests (Benjamini & Yekutieli, 2001). We apply this approach to a published data set and compare the results to the conclusions drawn by the authors based on visual analysis. The multiple randomization testing procedure can give more detailed information about which data aspects are affected by the single-case intervention. We provide generic R-code to execute the presented analyses.

摘要

我们提出了一种方法,可以对单病例 ABAB 阶段设计的每个数据方面进行多种有力的推断:水平、趋势、可变性、重叠、即时性和数据模式的一致性。我们逐步展示了如何为每个数据方面计算效果大小度量,并随后将其作为多个随机化检验的检验统计量进行整合。为了控制 I 类错误,我们讨论了三种基于错误发现率调整获得的 p 值的方法:Benjamini 和 Hochberg(1995 年)提出的多重检验校正、Benjamini 和 Hochberg(2000 年)建议的自适应校正以及考虑到检验之间的相关性的校正(Benjamini 和 Yekutieli,2001 年)。我们将此方法应用于已发表的数据集,并将结果与作者基于视觉分析得出的结论进行比较。多重随机化检验程序可以提供更详细的信息,了解哪些数据方面受到单病例干预的影响。我们提供了通用的 R 代码来执行所呈现的分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验