Faculty of Psychology and Educational Sciences, Methodology of Educational Sciences Research Group, KU Leuven - University of Leuven, Leuven, Belgium.
Behav Res Ther. 2019 Aug;119:103414. doi: 10.1016/j.brat.2019.103414. Epub 2019 Jun 5.
We present an approach to draw multiple and powerful inferences for each data aspect of single-case ABAB phase designs: level, trend, variability, overlap, immediacy, and consistency of data patterns. We show step-by-step how effect size measures can be calculated for each data aspect and subsequently integrated as test statistics in multiple randomization tests. To control for Type I errors, we discuss three methods for adjusting the obtained p-values based on the false discovery rate: the multiple testing correction proposed by Benjamini and Hochberg (1995), the adaptive correction suggested by Benjamini and Hochberg (2000), and the correction taking into account the dependency between the tests (Benjamini & Yekutieli, 2001). We apply this approach to a published data set and compare the results to the conclusions drawn by the authors based on visual analysis. The multiple randomization testing procedure can give more detailed information about which data aspects are affected by the single-case intervention. We provide generic R-code to execute the presented analyses.
我们提出了一种方法,可以对单病例 ABAB 阶段设计的每个数据方面进行多种有力的推断:水平、趋势、可变性、重叠、即时性和数据模式的一致性。我们逐步展示了如何为每个数据方面计算效果大小度量,并随后将其作为多个随机化检验的检验统计量进行整合。为了控制 I 类错误,我们讨论了三种基于错误发现率调整获得的 p 值的方法:Benjamini 和 Hochberg(1995 年)提出的多重检验校正、Benjamini 和 Hochberg(2000 年)建议的自适应校正以及考虑到检验之间的相关性的校正(Benjamini 和 Yekutieli,2001 年)。我们将此方法应用于已发表的数据集,并将结果与作者基于视觉分析得出的结论进行比较。多重随机化检验程序可以提供更详细的信息,了解哪些数据方面受到单病例干预的影响。我们提供了通用的 R 代码来执行所呈现的分析。