Department of Mechanical Engineering, University of Nevada, Las Vegas, NV, USA.
Electrophoresis. 2019 Oct;40(20):2655-2661. doi: 10.1002/elps.201900127. Epub 2019 Jun 17.
Ion-ion electrostatic correlations are recognized to play a significant role in the presence of concentrated multivalent electrolytes. To account for their impact on ionic current rectification phenomenon in conical nanopores, we use the modified continuum Poisson-Nernst-Planck (PNP) equations by Bazant et al. Coupled with the Stokes equations, the effects of the EOF are also included. We thoroughly investigate the dependence of the ionic current rectification ratios as a function of the double layer thickness and the electrostatic correlation length. By considering the electrostatic correlations, the modified PNP model successfully captures the ionic current rectification reversal in nanopores filled with lanthanum chloride LaCl . This finding qualitatively agrees with the experimental observations that cannot be explained by the standard PNP model, suggesting that ion-ion electrostatic correlations are responsible for this reversal behavior. The modified PNP model not only can be used to explain the experiments, but also go beyond to provide a design tool for nanopore applications involving multivalent electrolytes.
离子-离子静电相关性在存在高浓度多价电解质的情况下被认为起着重要作用。为了在圆锥形纳米孔中解释它们对离子电流整流现象的影响,我们使用了 Bazant 等人修改后的连续 Poisson-Nernst-Planck (PNP) 方程。与 Stokes 方程耦合后,还包括了电渗流的影响。我们深入研究了离子电流整流比作为双层厚度和静电相关长度的函数的依赖性。通过考虑静电相关性,修改后的 PNP 模型成功地捕捉到了填充镧氯化物 LaCl 的纳米孔中离子电流整流的反转。这一发现与实验观察定性一致,标准 PNP 模型无法解释这一反转行为,表明离子-离子静电相关性是造成这种反转行为的原因。修改后的 PNP 模型不仅可以用来解释实验,还可以提供一个涉及多价电解质的纳米孔应用的设计工具。