Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, 21111 Lakeshore Rd, Ste Anne-de-Bellevue, QC, H9X 3V9, Canada.
Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, QC, Québec, Canada.
Environ Microbiol. 2019 Oct;21(10):3711-3727. doi: 10.1111/1462-2920.14715. Epub 2019 Jul 11.
Microbial metabolism of the thawing organic carbon stores in permafrost results in a positive feedback loop of greenhouse gas emissions. CO and CH fluxes and the associated microbial communities in Arctic cryosols are important in predicting future warming potential of the Arctic. We demonstrate that topography had an impact on CH and CO flux at a high Arctic ice-wedge polygon terrain site, with higher CO emissions and lower CH uptake at troughs compared to polygon interior soils. The pmoA sequencing suggested that USCα cluster of uncultured methanotrophs is likely responsible for observed methane sink. Community profiling revealed distinct assemblages across the terrain at different depths. Deeper soils contained higher abundances of Verrucomicrobia and Gemmatimonadetes, whereas the polygon interior had higher Acidobacteria and lower Betaproteobacteria and Deltaproteobacteria abundances. Genome sequencing of isolates from the terrain revealed presence of carbon cycling genes including ones involved in serine and ribulose monophosphate pathways. A novel hybrid network analysis identified key members that had positive and negative impacts on other species. Operational Taxonomic Units (OTUs) with numerous positive interactions corresponded to Proteobacteria, Candidatus Rokubacteria and Actinobacteria phyla, while Verrucomicrobia and Acidobacteria members had negative impacts on other species. Results indicate that topography and microbial interactions impact community composition.
微生物对永冻层中解冻有机碳储存的代谢作用导致温室气体排放的正反馈循环。在预测北极未来变暖潜力方面,北极寒带土壤中的 CO 和 CH 通量及其相关微生物群落非常重要。我们证明,在高北极冰楔多边形地形地点,地形对 CH 和 CO 通量有影响,与多边形内部土壤相比,低谷处 CO 排放量更高,CH 吸收量更低。pmoA 测序表明,未培养甲烷营养菌的 USCα 簇可能是造成甲烷汇的原因。群落分析表明,在不同深度的地形上存在明显的组合。较深的土壤中含有更多的疣微菌门和芽单胞菌门,而多边形内部的土壤中含有更多的酸杆菌门,而贝塔变形菌门和德尔塔变形菌门的丰度较低。对地形上分离株的基因组测序揭示了存在碳循环基因,包括丝氨酸和核酮糖单磷酸途径中涉及的基因。一种新的混合网络分析确定了对其他物种有积极和消极影响的关键成员。具有许多正相互作用的操作分类单元 (OTU) 对应于变形菌门、Candidatus Rokubacteria 和放线菌门,而疣微菌门和酸杆菌门成员对其他物种有负面影响。结果表明,地形和微生物相互作用会影响群落组成。