Suppr超能文献

从疾病器官分析角度理解疾病遗传学的新表型。

Analysis of disease organ as a novel phenotype towards disease genetics understanding.

机构信息

School of Computer Science, University of South China, Hengyang, Hunan 421001, China; Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.

Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA.

出版信息

J Biomed Inform. 2019 Jul;95:103235. doi: 10.1016/j.jbi.2019.103235. Epub 2019 Jun 15.

Abstract

Discerning the modular nature of human diseases through computational approaches calls for diverse data. The finding sites of diseases, like other disease phenotypes, possess rich information in understanding disease genetics. Yet, analysis of the rich knowledge of disease finding sites has not been comprehensively investigated. In this study, we built a large-scale disease organ network (DON) based on 76,561 disease-organ associations (for 37,615 diseases and 3492 organs) extracted from the United Medical Language System (UMLS) Metathesaurus. We investigated how phenotypic organ similarity among diseases in DON reflects disease gene sharing. We constructed a disease genetic network (DGN) using curated disease-gene associations and demonstrated that disease pairs with higher organ similarities not only are more likely to share genes, but also tend to share more genes. Based on community detection algorithm, we showed that phenotypic disease clusters on DON significantly correlated with genetic disease clusters on DGN. We compared DON with a state-of-art disease phenotype network, disease manifestation network (DMN), that we have recently constructed, and demonstrated that DON contains complementary knowledge for disease genetics understanding.

摘要

通过计算方法识别人类疾病的模块化性质需要多种数据。疾病的发现部位与其他疾病表型一样,在理解疾病遗传学方面具有丰富的信息。然而,对疾病发现部位丰富知识的分析尚未得到全面研究。在这项研究中,我们基于从统一医学语言系统(UMLS)Metathesaurus 中提取的 76561 个疾病-器官关联(涉及 37615 种疾病和 3492 种器官)构建了一个大型疾病器官网络(DON)。我们研究了 DON 中疾病之间的表型器官相似性如何反映疾病基因共享。我们使用经过精心整理的疾病-基因关联构建了一个疾病遗传网络(DGN),并证明具有更高器官相似性的疾病对不仅更有可能共享基因,而且往往共享更多的基因。基于社区检测算法,我们表明 DON 上的表型疾病簇与 DGN 上的遗传疾病簇显著相关。我们将 DON 与我们最近构建的一种最先进的疾病表型网络(疾病表现网络,DMN)进行了比较,并证明 DON 包含了对疾病遗传学理解的互补知识。

相似文献

1
Analysis of disease organ as a novel phenotype towards disease genetics understanding.
J Biomed Inform. 2019 Jul;95:103235. doi: 10.1016/j.jbi.2019.103235. Epub 2019 Jun 15.
2
Comparative analysis of a novel disease phenotype network based on clinical manifestations.
J Biomed Inform. 2015 Feb;53:113-20. doi: 10.1016/j.jbi.2014.09.007. Epub 2014 Sep 30.
3
Pathway networks generated from human disease phenome.
BMC Med Genomics. 2018 Sep 14;11(Suppl 3):75. doi: 10.1186/s12920-018-0386-2.
4
Gene gravity-like algorithm for disease gene prediction based on phenotype-specific network.
BMC Syst Biol. 2017 Dec 6;11(1):121. doi: 10.1186/s12918-017-0519-9.
7
Annotating Diseases Using Human Phenotype Ontology Improves Prediction of Disease-Associated Long Non-coding RNAs.
J Mol Biol. 2018 Jul 20;430(15):2219-2230. doi: 10.1016/j.jmb.2018.05.006. Epub 2018 May 24.
8
9
The human disease network in terms of dysfunctional regulatory mechanisms.
Biol Direct. 2015 Oct 8;10:60. doi: 10.1186/s13062-015-0088-z.
10
Phenome-driven disease genetics prediction toward drug discovery.
Bioinformatics. 2015 Jun 15;31(12):i276-83. doi: 10.1093/bioinformatics/btv245.

本文引用的文献

1
The Alzheimer's comorbidity phenome: mining from a large patient database and phenome-driven genetics prediction.
JAMIA Open. 2019 Apr;2(1):131-138. doi: 10.1093/jamiaopen/ooy050. Epub 2018 Dec 19.
2
Large-scale mining disease comorbidity relationships from post-market drug adverse events surveillance data.
BMC Bioinformatics. 2018 Dec 28;19(Suppl 17):500. doi: 10.1186/s12859-018-2468-8.
3
Recent advances in predicting gene-disease associations.
F1000Res. 2017 Apr 26;6:578. doi: 10.12688/f1000research.10788.1. eCollection 2017.
4
Gene ORGANizer: linking genes to the organs they affect.
Nucleic Acids Res. 2017 Jul 3;45(W1):W138-W145. doi: 10.1093/nar/gkx302.
5
DisGeNET: a comprehensive platform integrating information on human disease-associated genes and variants.
Nucleic Acids Res. 2017 Jan 4;45(D1):D833-D839. doi: 10.1093/nar/gkw943. Epub 2016 Oct 19.
6
A Comprehensive Evaluation of Disease Phenotype Networks for Gene Prioritization.
PLoS One. 2016 Jul 14;11(7):e0159457. doi: 10.1371/journal.pone.0159457. eCollection 2016.
7
Learning disease relationships from clinical drug trials.
J Am Med Inform Assoc. 2017 Jan;24(1):13-23. doi: 10.1093/jamia/ocw003. Epub 2016 May 17.
8
Human genotype-phenotype databases: aims, challenges and opportunities.
Nat Rev Genet. 2015 Dec;16(12):702-15. doi: 10.1038/nrg3932. Epub 2015 Nov 10.
9
Phenome-driven disease genetics prediction toward drug discovery.
Bioinformatics. 2015 Jun 15;31(12):i276-83. doi: 10.1093/bioinformatics/btv245.
10
PsyGeNET: a knowledge platform on psychiatric disorders and their genes.
Bioinformatics. 2015 Sep 15;31(18):3075-7. doi: 10.1093/bioinformatics/btv301. Epub 2015 May 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验