Suppr超能文献

从上市后药物不良反应监测数据中挖掘大规模矿业疾病共病关系。

Large-scale mining disease comorbidity relationships from post-market drug adverse events surveillance data.

机构信息

Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, 2103 Cornell Road, Cleveland, 44106, OH, USA.

出版信息

BMC Bioinformatics. 2018 Dec 28;19(Suppl 17):500. doi: 10.1186/s12859-018-2468-8.

Abstract

BACKGROUND

Systems approaches in studying disease relationship have wide applications in biomedical discovery, such as disease mechanism understanding and drug discovery. The FDA Adverse Event Reporting System (FAERS) contains rich information about patient diseases, medications, drug adverse events and demographics of 17 million case reports. Here, we explored this data resource to mine disease comorbidity relationships using association rule mining algorithm and constructed a disease comorbidity network.

RESULTS

We constructed a disease comorbidity network with 1059 disease nodes and 12,608 edges using association rule mining of FAERS (14,157 rules). We evaluated the performance of comorbidity mining from FAERS using known disease comorbidities of multiple sclerosis (MS), psoriasis and obesity that represent rare, moderate and common disease respectively. Comorbidities of MS, obesity and psoriasis obtained from our network achieved precisions of 58.6%, 73.7%, 56.2% and recalls 87.5%, 69.2% and 72.7% separately. We performed comparative analysis of the disease comorbidity network with disease semantic network, disease genetic network and disease treatment network. We showed that (1) disease comorbidity clusters exhibit significantly higher semantic similarity than random network (0.18 vs 0.10); (2) disease comorbidity clusters share significantly more genes (0.46 vs 0.06); and (3) disease comorbidity clusters share significantly more drugs (0.64 vs 0.17). Finally, we demonstrated that the disease comorbidity network has potential in uncovering novel disease relationships using asthma as a case study.

CONCLUSIONS

Our study presented the first comprehensive attempt to build a disease comorbidity network from FDA Adverse Event Reporting System. This network shows well correlated with disease semantic similarity, disease genetics and disease treatment, which has great potential in disease genetics prediction and drug discovery.

摘要

背景

系统方法在研究疾病关系方面在生物医学发现中有着广泛的应用,例如疾病机制的理解和药物发现。FDA 不良事件报告系统(FAERS)包含了 1700 万例病例报告中关于患者疾病、药物、药物不良反应和人口统计学的丰富信息。在这里,我们探索了这个数据资源,使用关联规则挖掘算法挖掘疾病共病关系,并构建了疾病共病网络。

结果

我们使用 FAERS 的关联规则挖掘(14157 条规则)构建了一个包含 1059 个疾病节点和 12608 条边的疾病共病网络。我们使用多发性硬化症(MS)、银屑病和肥胖症的已知疾病共病来评估从 FAERS 中挖掘共病的性能,这三种疾病分别代表罕见、中度和常见疾病。从我们的网络中获得的 MS、肥胖症和银屑病的共病具有 58.6%、73.7%和 56.2%的精度和 87.5%、69.2%和 72.7%的召回率。我们对疾病共病网络与疾病语义网络、疾病遗传网络和疾病治疗网络进行了比较分析。结果表明:(1)疾病共病聚类的语义相似性显著高于随机网络(0.18 比 0.10);(2)疾病共病聚类共享的基因显著更多(0.46 比 0.06);(3)疾病共病聚类共享的药物显著更多(0.64 比 0.17)。最后,我们以哮喘为例,证明了疾病共病网络在发现新的疾病关系方面具有潜力。

结论

我们的研究首次从 FDA 不良事件报告系统中尝试构建一个全面的疾病共病网络。该网络与疾病语义相似性、疾病遗传学和疾病治疗具有很好的相关性,在疾病遗传学预测和药物发现方面具有很大的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cee2/6309066/488cfa27f447/12859_2018_2468_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验