INSERM U1016, CNRS UMR8104, Institut Cochin, Université Paris Descartes, 123 Boulevard de Port-Royal, 75014, Paris, France.
Present Address: Laboratoire de Recherche Translationnelle en Immunothérapie, Institut Gustave Roussy, 114 Rue Edouard Vaillant, 94800, Villejuif, France.
BMC Biotechnol. 2019 Jun 17;19(1):35. doi: 10.1186/s12896-019-0531-9.
Viral vectors are invaluable tools to transfer genes and/or regulatory sequences into differentiated cells such as pancreatic cells. To date, several kinds of viral vectors have been used to transduce different pancreatic cell types, including insulin-producing β cells. However, few studies have used vectors derived from « simple » retroviruses, such as avian α- or mouse γ-retroviruses, despite their high experimental convenience. Moreover, such vectors were never designed to specifically target transgene expression into β cells.
We here describe two novel α- or SIN (Self-Inactivating) γ-retrovectors containing the RIP (Rat Insulin Promoter) as internal promoter. These two retrovectors are easily produced in standard BSL2 conditions, rapidly concentrated if needed, and harbor a large multiple cloning site. For the SIN γ-retrovector, either the VSV-G (pantropic) or the retroviral ecotropic (rodent specific) envelope was used. For the α-retrovector, we used the A type envelope, as its receptor, termed TVA, is only naturally present in avian cells and can efficiently be provided to mammalian β cells through either exogenous expression upon cDNA transfer or gesicle-mediated delivery of the protein. As expected, the transgenes cloned into the two RIP-containing retrovectors displayed a strong preferential expression in β over non-β cells compared to transgenes cloned in their non-RIP (CMV- or LTR-) regulated counterparts. We further show that RIP activity of both retrovectors mirrored fluctuations affecting endogenous INSULIN gene expression in human β cells. Finally, both α- and SIN γ-retrovectors were extremely poorly mobilized by the BXV1 xenotropic retrovirus, a common invader of human cells grown in immunodeficient mice, and, most notably, of human β cell lines.
Our novel α- and SIN γ-retrovectors are safe and convenient tools to stably and specifically express transgene(s) in mammalian β cells. Moreover, they both reproduce some regulatory patterns affecting INSULIN gene expression. Thus, they provide a helpful tool to both study the genetic control of β cell function and monitor changes in their differentiation status.
病毒载体是将基因和/或调控序列转导到分化细胞(如胰腺细胞)中的宝贵工具。迄今为止,已经使用了多种病毒载体来转导不同的胰腺细胞类型,包括产生胰岛素的β细胞。然而,很少有研究使用源自“简单”逆转录病毒的载体,例如禽α或鼠γ逆转录病毒,尽管它们具有很高的实验便利性。此外,这些载体从未被设计为专门将转基因表达靶向β细胞。
我们在这里描述了两种新型的α或 SIN(自我失活)γ逆转录病毒载体,它们包含 RIP(大鼠胰岛素启动子)作为内部启动子。这两种逆转录病毒载体很容易在标准的 BSL2 条件下生产,如果需要,可以快速浓缩,并且具有大的多克隆位点。对于 SINγ逆转录病毒载体,使用了 VSV-G(泛嗜性)或逆转录病毒的 ecotropic(啮齿动物特异性)包膜。对于α逆转录病毒载体,我们使用了 A 型包膜,因为其受体 TVA 仅天然存在于禽细胞中,可以通过 cDNA 转移后的外源性表达或蛋白的 gesicle 介导传递有效地提供给哺乳动物β细胞。正如预期的那样,与克隆到其非 RIP(CMV 或 LTR-)调节的对应物中的转基因相比,克隆到这两个含 RIP 的逆转录病毒载体中的转基因在β细胞中比在非β细胞中表现出强烈的优先表达。我们进一步表明,两种逆转录病毒载体的 RIP 活性都反映了影响人β细胞中内源性 INSULIN 基因表达的波动。最后,BXV1 异嗜性逆转录病毒几乎不能移动α和 SINγ逆转录病毒,BXV1 是免疫缺陷小鼠中生长的人细胞的常见入侵物,最值得注意的是,它不能移动人β细胞系。
我们的新型α和 SINγ逆转录病毒载体是安全且方便的工具,可稳定且特异性地在哺乳动物β细胞中表达转基因。此外,它们都再现了一些影响 INSULIN 基因表达的调节模式。因此,它们为研究β细胞功能的遗传控制和监测其分化状态的变化提供了有用的工具。