Signature Programme in Health Services & Systems Research, Duke-NUS Medical School, Singapore, Singapore.
Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore, Singapore.
Int J Epidemiol. 2019 Dec 1;48(6):1981-1991. doi: 10.1093/ije/dyz116.
Previous simulation studies of the case-control study design using incidence density sampling, which required individual matching for time, showed biased estimates of association from conditional logistic regression (CLR) analysis; however, the reason for this is unknown. Separately, in the analysis of case-control studies using the exclusive sampling design, it has been shown that unconditional logistic regression (ULR) with adjustment for an individually matched binary factor can give unbiased estimates. The validity of this analytic approach in incidence density sampling needs evaluation.
In extensive simulations using incidence density sampling, we evaluated various analytic methods: CLR with and without a bias-reduction method, ULR with adjustment for time in quintiles (and residual time within quintiles) and ULR with adjustment for matched sets and bias reduction. We re-analysed a case-control study of Haemophilus influenzae type B vaccine using these methods.
We found that the bias in the CLR analysis from previous studies was due to sparse data bias. It can be controlled by the bias-reduction method for CLR or by increasing the number of cases and/or controls. ULR with adjustment for time in quintiles usually gave results highly comparable to CLR, despite breaking the matches. Further adjustment for residual time trends was needed in the case of time-varying effects. ULR with adjustment for matched sets tended to perform poorly despite bias reduction.
Studies using incidence density sampling may be analysed by either ULR with adjustment for time or CLR, possibly with bias reduction.
先前使用发病率密度抽样的病例对照研究设计的模拟研究表明,条件逻辑回归(CLR)分析的关联估计存在偏倚;然而,原因尚不清楚。另外,在使用排他性抽样设计的病例对照研究的分析中,已经表明,对于个体匹配的二进制因素进行调整的非条件逻辑回归(ULR)可以给出无偏估计。需要评估这种分析方法在发病率密度抽样中的有效性。
在使用发病率密度抽样的广泛模拟中,我们评估了各种分析方法:CLR 与没有偏倚减少方法的 CLR、调整时间五分位数(以及五分位数内的剩余时间)的 ULR 和调整匹配集和偏倚减少的 ULR。我们使用这些方法重新分析了乙型流感嗜血杆菌疫苗的病例对照研究。
我们发现,先前研究中 CLR 分析中的偏倚是由于稀疏数据偏倚造成的。可以通过 CLR 的偏倚减少方法或增加病例和/或对照的数量来控制。尽管打破了匹配,调整五分位数时间的 ULR 通常给出与 CLR 高度可比的结果。对于时变效应,需要进一步调整剩余时间趋势。尽管进行了偏倚减少,但调整匹配集的 ULR 往往表现不佳。
使用发病率密度抽样的研究可以通过调整时间的 ULR 或 CLR 进行分析,可能需要进行偏倚减少。