Am J Epidemiol. 2021 Sep 1;190(9):1859-1866. doi: 10.1093/aje/kwab056.
Although the need for addressing matching in the analysis of matched case-control studies is well established, debate remains as to the most appropriate analytical method when matching on at least 1 continuous factor. We compared the bias and efficiency of unadjusted and adjusted conditional logistic regression (CLR) and unconditional logistic regression (ULR) in the setting of both exact and nonexact matching. To demonstrate that case-control matching distorts the association between the matching variables and the outcome in the matched sample relative to the target population, we derived the logit model for the matched case-control sample under exact matching. We conducted simulations to validate our theoretical conclusions and to explore different ways of adjusting for the matching variables in CLR and ULR to reduce biases. When matching is exact, CLR is unbiased in all settings. When matching is not exact, unadjusted CLR tends to be biased, and this bias increases with increasing matching caliper size. Spline smoothing of the matching variables in CLR can alleviate biases. Regardless of exact or nonexact matching, adjusted ULR is generally biased unless the functional form of the matched factors is modeled correctly. The validity of adjusted ULR is vulnerable to model specification error. CLR should remain the primary analytical approach.
尽管在分析配对病例对照研究时需要解决匹配问题,但对于至少匹配 1 个连续因素时最适合的分析方法仍存在争议。我们比较了当匹配完全和不完全时,未调整和调整后的条件逻辑回归(CLR)和无条件逻辑回归(ULR)的偏差和效率。为了证明病例对照匹配相对于目标人群会扭曲匹配变量与结局之间的关联,我们在完全匹配的情况下推导出匹配病例对照样本的对数几率模型。我们进行了模拟验证了我们的理论结论,并探索了在 CLR 和 ULR 中调整匹配变量以减少偏差的不同方法。当匹配完全时,CLR 在所有情况下都是无偏的。当匹配不完全时,未调整的 CLR 往往存在偏差,并且这种偏差随着匹配卡尺尺寸的增加而增加。CLR 中匹配变量的样条平滑可以缓解偏差。无论匹配是否完全,调整后的 ULR 通常存在偏差,除非正确地对匹配因素的函数形式进行建模。调整后的 ULR 的有效性容易受到模型规范错误的影响。CLR 应该仍然是主要的分析方法。