Suppr超能文献

在传染病建模中实现解释深度和空间广度:整合主动和被动病例监测。

Achieving explanatory depth and spatial breadth in infectious disease modelling: Integrating active and passive case surveillance.

作者信息

Nelli Luca, Ferguson Heather M, Matthiopoulos Jason

机构信息

Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.

出版信息

Stat Methods Med Res. 2020 May;29(5):1273-1287. doi: 10.1177/0962280219856380. Epub 2019 Jun 18.

Abstract

Ideally, the data used for robust spatial prediction of disease distribution should be both high-resolution and spatially expansive. However, such in-depth and geographically broad data are rarely available in practice. Instead, researchers usually acquire either detailed epidemiological data with high resolution at a small number of active sampling sites, or more broad-ranging but less precise data from passive case surveillance. We propose a novel inferential framework, capable of simultaneously drawing insights from both passive and active data types. We developed a Bayesian latent point process approach, combining active data collection in a limited set of points, where in-depth covariates are measured, with passive case detection, where error-prone, large-scale disease data are accompanied only by coarse or remotely-sensed covariate layers. Using the example of malaria, we tested our method's efficiency under several hypothetical scenarios of reported incidence in different combinations of imperfect detection and spatial complexity of the environmental variables. We provide a simple solution to a widespread problem in spatial epidemiology, combining latent process modelling and spatially autoregressive modelling. By using active sampling and passive case detection in a complementary way, we achieved the best-of-both-worlds, in effect, a formal calibration of spatially extensive, error-prone data by localised, high-quality data.

摘要

理想情况下,用于疾病分布稳健空间预测的数据应兼具高分辨率和空间广度。然而,这种深入且地理范围广泛的数据在实际中很少能获取到。相反,研究人员通常要么在少数活跃采样点获取具有高分辨率的详细流行病学数据,要么从被动病例监测中获取范围更广但精度较低的数据。我们提出了一种新颖的推理框架,能够同时从被动和主动数据类型中获取见解。我们开发了一种贝叶斯潜点过程方法,将在有限一组点上进行的主动数据收集(在这些点上测量深入的协变量)与被动病例检测相结合,在被动病例检测中,容易出错的大规模疾病数据仅伴有粗略的或遥感协变量层。以疟疾为例,我们在不同的不完美检测和环境变量空间复杂性组合的几种假设报告发病率场景下测试了我们方法的效率。我们提供了一个针对空间流行病学中普遍问题的简单解决方案,将潜过程建模和空间自回归建模相结合。通过以互补的方式使用主动采样和被动病例检测,我们实现了两全其美,实际上是用局部高质量数据对空间广泛、容易出错的数据进行正式校准。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验