Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources (LG2A), UMR 7378 CNRS/Université de Picardie Jules Verne, 10, rue Baudelocque, 80089, Amiens Cedex, France.
Agents Infectieux, Résistance et Chimiothérapie (AGIR), EA 4294 Université de Picardie Jules Verne, 1, rue des Louvels, 80037, Amiens Cedex 1, France.
J Biol Inorg Chem. 2019 Aug;24(5):659-673. doi: 10.1007/s00775-019-01678-x. Epub 2019 Jun 18.
Pyoverdines are Pseudomonas aeruginosa's primary siderophores. These molecules, composed of a fluorescent chromophore attached to a peptide chain of 6-14 amino acids, are synthesized by the bacterium to scavenge iron (essential to its survival and growth) from its environment. Hijacking the siderophore pathway to use pyoverdine-antibiotic compounds in a Trojan horse approach has shown promise but remains very challenging because of the synthetic efforts involved. Indeed, both possible approaches (grafting an antibiotic on pyoverdine harvested from Pseudomonas or designing a total synthesis route) are costly, time-consuming and low-yield tasks. Designing comparatively simple analogs featuring the salient properties of the original siderophore is thus crucial for the conception of novel antibiotics to fight bacterial resistance. In this work, we focus on the replacement of the pyoverdine chromophore, a major roadblock on the synthetic pathway. We propose three simpler analogs and evaluate their ability to complex iron and interact with the FpvA transporter using molecular modeling techniques. Based on these results, we discuss the role of the native chromophore's main features (polycyclicity, positive charge, flexibility) on pyoverdine's ability to bind iron and be recognized by membrane transporter FpvA and propose guidelines for the design of effective synthetic siderophores.
绿脓菌素是铜绿假单胞菌的主要铁载体。这些分子由一个荧光生色团与 6-14 个氨基酸组成的肽链组成,由细菌合成,从环境中掠夺铁(对其生存和生长至关重要)。劫持铁载体途径,以特洛伊木马的方式使用绿脓菌素-抗生素化合物已经显示出希望,但由于涉及的合成努力仍然非常具有挑战性。事实上,这两种可能的方法(将抗生素接枝到从铜绿假单胞菌中提取的绿脓菌素上或设计全合成路线)既昂贵又耗时,且产量低。因此,设计具有原始铁载体主要特性的相对简单的类似物对于设计新型抗生素来对抗细菌耐药性至关重要。在这项工作中,我们专注于替换绿脓菌素的生色团,这是合成途径上的一个主要障碍。我们提出了三个更简单的类似物,并使用分子建模技术评估它们与铁络合和与 FpvA 转运蛋白相互作用的能力。基于这些结果,我们讨论了天然生色团的主要特征(多环性、正电荷、柔韧性)对绿脓菌素结合铁和被膜转运蛋白 FpvA 识别的能力的作用,并提出了设计有效合成铁载体的指南。