Suppr超能文献

机器学习在电子-量子物质成像实验中的应用。

Machine learning in electronic-quantum-matter imaging experiments.

机构信息

Department of Physics, Cornell University, Ithaca, NY, USA.

Laboratoire de Physique des Solides, Université Paris-Sud, CNRS, Orsay, France.

出版信息

Nature. 2019 Jun;570(7762):484-490. doi: 10.1038/s41586-019-1319-8. Epub 2019 Jun 19.

Abstract

For centuries, the scientific discovery process has been based on systematic human observation and analysis of natural phenomena. Today, however, automated instrumentation and large-scale data acquisition are generating datasets of such large volume and complexity as to defy conventional scientific methodology. Radically different scientific approaches are needed, and machine learning (ML) shows great promise for research fields such as materials science. Given the success of ML in the analysis of synthetic data representing electronic quantum matter (EQM), the next challenge is to apply this approach to experimental data-for example, to the arrays of complex electronic-structure images obtained from atomic-scale visualization of EQM. Here we report the development and training of a suite of artificial neural networks (ANNs) designed to recognize different types of order hidden in such EQM image arrays. These ANNs are used to analyse an archive of experimentally derived EQM image arrays from carrier-doped copper oxide Mott insulators. In these noisy and complex data, the ANNs discover the existence of a lattice-commensurate, four-unit-cell periodic, translational-symmetry-breaking EQM state. Further, the ANNs determine that this state is unidirectional, revealing a coincident nematic EQM state. Strong-coupling theories of electronic liquid crystals are consistent with these observations.

摘要

几个世纪以来,科学发现过程一直基于系统的人类观察和对自然现象的分析。然而,如今自动化仪器和大规模数据采集正在产生如此大量和复杂的数据集,以至于传统的科学方法无法应对。需要采用截然不同的科学方法,机器学习(ML)在材料科学等研究领域显示出巨大的前景。鉴于 ML 在分析代表电子量子物质(EQM)的合成数据方面取得的成功,下一个挑战是将这种方法应用于实验数据 - 例如,应用于从 EQM 的原子尺度可视化获得的复杂电子结构图像阵列。在这里,我们报告了一套旨在识别隐藏在这种 EQM 图像阵列中的不同类型的顺序的人工神经网络(ANNs)的开发和训练。这些神经网络用于分析来自载流子掺杂铜氧化物莫特绝缘体的实验衍生 EQM 图像阵列的档案。在这些嘈杂和复杂的数据中,神经网络发现了存在晶格协调的、四单元胞周期性的、平移对称破缺的 EQM 状态。此外,神经网络确定该状态是单向的,揭示了一致的向列 EQM 状态。电子液晶的强耦合理论与这些观察结果一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验