Suppr超能文献

机器学习辅助的等离子体超表面用于增强超薄硅膜中的宽带吸收

Machine learning assisted plasmonic metascreen for enhanced broadband absorption in ultra-thin silicon films.

作者信息

Ahmed Waqas W, Cao Haicheng, Xu Changqing, Farhat Mohamed, Amin Muhammad, Li Xiaohang, Zhang Xiangliang, Wu Ying

机构信息

Division of Computer, Electrical and Mathematical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.

College of Engineering, Taibah University, Madinah, 42353, Saudi Arabia.

出版信息

Light Sci Appl. 2025 Jan 9;14(1):42. doi: 10.1038/s41377-024-01723-8.

Abstract

We propose and demonstrate a data-driven plasmonic metascreen that efficiently absorbs incident light over a wide spectral range in an ultra-thin silicon film. By embedding a double-nanoring silver array within a 20 nm ultrathin amorphous silicon (a-Si) layer, we achieve a significant enhancement of light absorption. This enhancement arises from the interaction between the resonant cavity modes and localized plasmonic modes, requiring precise tuning of plasmon resonances to match the absorption region of the silicon active layer. To facilitate the device design and improve light absorption without increasing the thickness of the active layer, we develop a deep learning framework, which learns to map from the absorption spectra to the design space. This inverse design strategy helps to tune the absorption for selective spectral functionalities. Our optimized design surpasses the bare silicon planar device, exhibiting a remarkable enhancement of over 100%. Experimental validation confirms the broadband enhancement of light absorption in the proposed configuration. The proposed metascreen absorber holds great potential for light harvesting applications and may be leveraged to improve the light conversion efficiency of ultra-thin silicon solar cells, photodetectors, and optical filters.

摘要

我们提出并展示了一种数据驱动的等离子体超表面,它能在超薄硅膜中在很宽的光谱范围内高效吸收入射光。通过在20纳米厚的非晶硅(a-Si)层中嵌入双纳米环银阵列,我们实现了光吸收的显著增强。这种增强源于谐振腔模式与局域等离子体模式之间的相互作用,这需要精确调谐等离子体共振以匹配硅有源层的吸收区域。为了便于器件设计并在不增加有源层厚度的情况下提高光吸收,我们开发了一个深度学习框架,该框架学习从吸收光谱映射到设计空间。这种逆向设计策略有助于针对选择性光谱功能调整吸收。我们的优化设计超越了裸硅平面器件,展现出超过100%的显著增强。实验验证证实了所提出配置中光吸收的宽带增强。所提出的超表面吸收器在光捕获应用中具有巨大潜力,可用于提高超薄硅太阳能电池、光电探测器和光学滤波器的光转换效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bf3e/11711677/40af3ad99af0/41377_2024_1723_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验