Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany.
J Comput Chem. 2019 Oct 5;40(26):2339-2347. doi: 10.1002/jcc.26004. Epub 2019 Jun 20.
MLatom is a program package designed for computationally efficient simulations of atomistic systems with machine-learning (ML) algorithms. It can be used out-of-the-box as a stand-alone program with a user-friendly online manual. The use of MLatom does not require extensive knowledge of machine learning, programming, or scripting. The user need only prepare input files and choose appropriate options. The program implements kernel ridge regression and supports Gaussian, Laplacian, and Matérn kernels. It can use arbitrary, user-provided input vectors and can convert molecular geometries into input vectors corresponding to several types of built-in molecular descriptors. MLatom saves and re-uses trained ML models as needed, in addition to estimating the generalization error of ML setups. Various sampling procedures are supported and the gradients of output properties can be calculated. The core part of MLatom is written in Fortran, uses standard libraries for linear algebra, and is optimized for shared-memory parallel computations. © 2019 Wiley Periodicals, Inc.
MLatom 是一个程序包,专为使用机器学习 (ML) 算法对原子系统进行计算效率高的模拟而设计。它可以作为一个独立的程序使用,带有用户友好的在线手册。使用 MLatom 不需要对机器学习、编程或脚本有广泛的了解。用户只需准备输入文件并选择适当的选项。该程序实现了核岭回归,并支持高斯、拉普拉斯和 Matérn 核。它可以使用任意的、用户提供的输入向量,并将分子几何结构转换为与几种内置分子描述符相对应的输入向量。除了估计 ML 设置的泛化误差外,MLatom 还根据需要保存和重用训练过的 ML 模型。支持各种采样程序,并可以计算输出特性的梯度。MLatom 的核心部分是用 Fortran 编写的,使用线性代数的标准库,并针对共享内存并行计算进行了优化。© 2019 威利父子公司