Zhang Lina, Pios Sebastian V, Martyka Mikołaj, Ge Fuchun, Hou Yi-Fan, Chen Yuxinxin, Chen Lipeng, Jankowska Joanna, Barbatti Mario, Dral Pavlo O
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China.
Zhejiang Laboratory, Hangzhou, Zhejiang 311100, People's Republic of China.
J Chem Theory Comput. 2024 Jun 25;20(12):5043-5057. doi: 10.1021/acs.jctc.4c00468. Epub 2024 Jun 5.
We present an open-source MLatom@XACS software ecosystem for on-the-fly surface hopping nonadiabatic dynamics based on the Landau-Zener-Belyaev-Lebedev algorithm. The dynamics can be performed via Python API with a wide range of quantum mechanical (QM) and machine learning (ML) methods, including ab initio QM (CASSCF and ADC(2)), semiempirical QM methods (e.g., AM1, PM3, OMx, and ODMx), and many types of ML potentials (e.g., KREG, ANI, and MACE). Combinations of QM and ML methods can also be used. While the user can build their own combinations, we provide AIQM1, which is based on Δ-learning and can be used out-of-the-box. We showcase how AIQM1 reproduces the isomerization quantum yield of -azobenzene at a low cost. We provide example scripts that, in dozens of lines, enable the user to obtain the final population plots by simply providing the initial geometry of a molecule. Thus, those scripts perform geometry optimization, normal mode calculations, initial condition sampling, parallel trajectories propagation, population analysis, and final result plotting. Given the capabilities of MLatom to be used for training different ML models, this ecosystem can be seamlessly integrated into the protocols building ML models for nonadiabatic dynamics. In the future, a deeper and more efficient integration of MLatom with Newton-X will enable a vast range of functionalities for surface hopping dynamics, such as fewest-switches surface hopping, to facilitate similar workflows via the Python API.
我们展示了一个基于朗道 - 齐纳 - 别利亚耶夫 - 列别杰夫算法的用于实时表面跳跃非绝热动力学的开源MLatom@XACS软件生态系统。该动力学可以通过Python API使用多种量子力学(QM)和机器学习(ML)方法来执行,包括从头算QM(CASSCF和ADC(2))、半经验QM方法(例如AM1、PM3、OMx和ODMx)以及多种类型的ML势(例如KREG、ANI和MACE)。也可以使用QM和ML方法的组合。虽然用户可以构建自己的组合,但我们提供了基于Δ学习且开箱即用的AIQM1。我们展示了AIQM1如何以低成本重现 - 偶氮苯的异构化量子产率。我们提供了示例脚本,只需几十行代码,用户通过简单提供分子的初始几何结构就能获得最终的布居图。因此,这些脚本可以执行几何结构优化、正则模式计算、初始条件采样、并行轨迹传播、布居分析以及最终结果绘图。鉴于MLatom可用于训练不同的ML模型,这个生态系统可以无缝集成到构建非绝热动力学ML模型的协议中。未来,MLatom与Newton - X更深入、更高效的集成将为表面跳跃动力学带来广泛的功能,例如最少开关表面跳跃,以通过Python API促进类似的工作流程。