Fera Science Limited, Sand Hutton, York YO41 1LZ, UK.
Università degli Studi di Milano, Dipartimento di Scienze Farmacologiche e Biomolecolari, Via Balzaretti 9, 20133 Milano, Italy.
Toxicol Appl Pharmacol. 2019 Sep 1;378:114630. doi: 10.1016/j.taap.2019.114630. Epub 2019 Jun 18.
With the aim of obtaining reliable estimates of Estrogen Receptor (ER) binding for diverse classes of compounds, a weight of evidence approach using estimates from a suite of in silico models was assessed. The predictivity of a simple Majority Consensus of (Q)SAR models was assessed using a test set of compounds with experimental Relative Binding Affinity (RBA) data. Molecular docking was also carried out and the binding energies of these compounds to the ERα receptor were determined. For a few selected compounds, including a known full agonist and antagonist, the intrinsic activity was determined using low-mode molecular dynamics methods. Individual (Q)SAR model predictivity varied, as expected, with some models showing high sensitivity, others higher specificity. However, the Majority Consensus (Q)SAR prediction showed a high accuracy and reasonably balanced sensitivity and specificity. Molecular docking provided quantitative information on strength of binding to the ERα receptor. For the 50 highest binding affinity compounds with positive RBA experimental values, just 5 of them were predicted to be non-binders by the Majority QSAR Consensus. Furthermore, agonist-specific assay experimental values for these 5 compounds were negative, which indicates that they may be ER antagonists. We also showed different scenarios of combining (Q)SAR results with Molecular docking classification of ER binding based on cut-off values of binding energies, providing a rational combined strategy to maximize terms of toxicological interest.
为了获得对不同类别化合物的雌激素受体 (ER) 结合的可靠估计,使用来自一系列计算机模型的估计值评估了一种基于证据权重的方法。使用具有实验相对结合亲和力 (RBA) 数据的化合物测试集评估了 (QSAR) 模型简单多数共识的预测能力。还进行了分子对接,并确定了这些化合物与 ERα 受体的结合能。对于包括已知的完全激动剂和拮抗剂在内的少数选定化合物,使用低模式分子动力学方法确定了内在活性。如预期的那样,个别 (QSAR) 模型的预测能力各不相同,一些模型具有较高的灵敏度,另一些则具有较高的特异性。然而,多数共识 (QSAR) 预测显示出较高的准确性和相当平衡的灵敏度和特异性。分子对接提供了与 ERα 受体结合强度的定量信息。对于具有阳性 RBA 实验值的 50 种最高结合亲和力化合物,只有 5 种被多数共识 QSAR 预测为非结合物。此外,这些 5 种化合物的激动剂特异性测定实验值为阴性,这表明它们可能是 ER 拮抗剂。我们还展示了基于结合能截止值将 (QSAR) 结果与 ER 结合的分子对接分类相结合的不同情况,提供了一种合理的联合策略,以最大限度地提高毒理学感兴趣的条件。