Suppr超能文献

多靶点计算机模拟策略发现新型血管紧张素转换酶和 Neprilysin 双重抑制剂。

Multi-Target In-Silico modeling strategies to discover novel angiotensin converting enzyme and neprilysin dual inhibitors.

机构信息

Department of Pharmaceutical Chemistry, Priyadarshini J. L. College of Pharmacy, Hingna Road, Nagpur, 440016, Maharashtra, India.

Department of Chemistry, Vidya Bharati Mahavidyalaya, Amravati, 444602, Maharashtra, India.

出版信息

Sci Rep. 2024 Jul 10;14(1):15991. doi: 10.1038/s41598-024-66230-7.

Abstract

Cardiovascular diseases, including heart failure, stroke, and hypertension, affect 608 million people worldwide and cause 32% of deaths. Combination therapy is required in 60% of patients, involving concurrent Renin-Angiotensin-Aldosterone-System (RAAS) and Neprilysin inhibition. This study introduces a novel multi-target in-silico modeling technique (mt-QSAR) to evaluate the inhibitory potential against Neprilysin and Angiotensin-converting enzymes. Using both linear (GA-LDA) and non-linear (RF) algorithms, mt-QSAR classification models were developed using 983 chemicals to predict inhibitory effects on Neprilysin and Angiotensin-converting enzymes. The Box-Jenkins method, feature selection method, and machine learning algorithms were employed to obtain the most predictive model with ~ 90% overall accuracy. Additionally, the study employed virtual screening of designed scaffolds (Chalcone and its analogues, 1,3-Thiazole, 1,3,4-Thiadiazole) applying developed mt-QSAR models and molecular docking. The identified virtual hits underwent successive filtration steps, incorporating assessments of drug-likeness, ADMET profiles, and synthetic accessibility tools. Finally, Molecular dynamic simulations were then used to identify and rank the most favourable compounds. The data acquired from this study may provide crucial direction for the identification of new multi-targeted cardiovascular inhibitors.

摘要

心血管疾病包括心力衰竭、中风和高血压,影响全球 6.08 亿人,导致 32%的死亡。60%的患者需要联合治疗,包括同时抑制肾素-血管紧张素-醛固酮系统(RAAS)和 Neprilysin。本研究介绍了一种新的多靶点计算机模拟技术(mt-QSAR),用于评估对 Neprilysin 和血管紧张素转换酶的抑制潜力。使用线性(GA-LDA)和非线性(RF)算法,使用 983 种化学物质开发了 mt-QSAR 分类模型,以预测对 Neprilysin 和血管紧张素转换酶的抑制作用。采用 Box-Jenkins 方法、特征选择方法和机器学习算法,获得了具有约 90%整体准确性的最具预测性模型。此外,该研究还采用开发的 mt-QSAR 模型和分子对接对设计的支架(查尔酮及其类似物、1,3-噻唑、1,3,4-噻二唑)进行虚拟筛选。鉴定的虚拟命中物经历了连续的过滤步骤,包括评估药物相似性、ADMET 概况和合成可及性工具。最后,使用分子动力学模拟来识别和排名最有利的化合物。本研究获得的数据可为鉴定新的多靶点心血管抑制剂提供重要方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ff/11237057/3fd5716b0d22/41598_2024_66230_Fig1_HTML.jpg

相似文献

3
study to recognize novel angiotensin-converting-enzyme-I inhibitors by 2D-QSAR and constraint-based molecular simulations.
J Biomol Struct Dyn. 2024 Mar;42(5):2211-2230. doi: 10.1080/07391102.2023.2203261. Epub 2023 May 2.
5
A computational approach to the study of the binding mode of dual ACE/NEP inhibitors.
J Chem Inf Model. 2010 Mar 22;50(3):388-96. doi: 10.1021/ci9005047.
7
Synthesis and enzymatic evaluation of novel partially fluorinated thiol dual ACE/NEP inhibitors.
Bioorg Med Chem Lett. 2009 Aug 15;19(16):4715-9. doi: 10.1016/j.bmcl.2009.06.064. Epub 2009 Jun 21.
8
Predictive Modeling of Angiotensin I-Converting Enzyme Inhibitory Peptides Using Various Machine Learning Approaches.
J Agric Food Chem. 2020 Oct 28;68(43):12132-12140. doi: 10.1021/acs.jafc.0c04624. Epub 2020 Oct 1.

引用本文的文献

本文引用的文献

1
Heart Disease and Stroke Statistics-2023 Update: A Report From the American Heart Association.
Circulation. 2023 Feb 21;147(8):e93-e621. doi: 10.1161/CIR.0000000000001123. Epub 2023 Jan 25.
5
Pharmacological characterization of MT-1207, a novel multitarget antihypertensive agent.
Acta Pharmacol Sin. 2021 Jun;42(6):885-897. doi: 10.1038/s41401-021-00636-1. Epub 2021 Mar 29.
6
Hypertension: Current trends and future perspectives.
Br J Clin Pharmacol. 2021 Oct;87(10):3721-3736. doi: 10.1111/bcp.14825. Epub 2021 May 3.
8
Prospecting for to treat COVID-19 via molecular docking models of the SARS-CoV-2.
J Biomol Struct Dyn. 2022 Aug;40(12):5643-5652. doi: 10.1080/07391102.2021.1872419. Epub 2021 Jan 15.
9
Towards reproducible computational drug discovery.
J Cheminform. 2020 Jan 28;12(1):9. doi: 10.1186/s13321-020-0408-x.
10
Identification of bioactive molecules from tea plant as SARS-CoV-2 main protease inhibitors.
J Biomol Struct Dyn. 2021 Jul;39(10):3449-3458. doi: 10.1080/07391102.2020.1766572. Epub 2020 May 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验