Suppr超能文献

从超快前列腺动态对比增强 MRI 中估计生理参数的紧凑解决方案。

A compact solution for estimation of physiological parameters from ultrafast prostate dynamic contrast enhanced MRI.

机构信息

College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, People's Republic of China. Department of Radiology, University of Chicago, Chicago, IL 60637, United States of America.

出版信息

Phys Med Biol. 2019 Aug 7;64(15):155012. doi: 10.1088/1361-6560/ab2b62.

Abstract

The Tofts pharmacokinetic model requires multiple calculations for analysis of dynamic contrast enhanced (DCE) MRI. In addition, the Tofts model may not be appropriate for the prostate. This can result in error propagation that reduces the accuracy of pharmacokinetic measurements. In this study, we present a compact solution allowing estimation of physiological parameters K and v from ultrafast DCE acquisitions, without fitting DCE-MRI data to the standard Tofts pharmacokinetic model. Since the standard Tofts model can be simplified to the Patlak model at early times when contrast efflux from the extravascular extracellular space back to plasma is negligible, K can be solved explicitly for a specific time. Further, v can be estimated directly from the late steady-state signal using the derivative form of Tofts model. Ultrafast DCE-MRI data were acquired from 18 prostate cancer patients on a Philips Achieva 3T-TX scanner. Regions-of-interest (ROIs) for prostate cancer, normal tissue, gluteal muscle, and iliac artery were manually traced. The contrast media concentration as function of time was calculated over each ROI using gradient echo signal equation with pre-contrast tissue T1 values, and using the 'reference tissue' model with a linear approximation. There was strong correlation (r  =  0.88-0.91, p   <  0.0001) between K extracted from the Tofts model and K estimated from the compact solution for prostate cancer and normal tissue. Additionally, there was moderate correlation (r  =  0.65-0.73, p   <  0.0001) between extracted versus estimated v . Bland-Altman analysis showed moderate to good agreement between physiological parameters extracted from the Tofts model and those estimated from the compact solution with absolute bias less than 0.20 min and 0.10 for K and v , respectively. The compact solution may decrease systematic errors and error propagation, and could increase the efficiency of clinical workflow. The compact solution requires high temporal resolution DCE-MRI due to the need to adequately sample the early phase of contrast media uptake.

摘要

特夫茨药代动力学模型需要进行多次计算才能分析动态对比增强(DCE)MRI。此外,特夫茨模型可能不适合前列腺。这会导致误差传播,从而降低药代动力学测量的准确性。在这项研究中,我们提出了一种紧凑的解决方案,允许从超快 DCE 采集估计生理参数 K 和 v,而无需将 DCE-MRI 数据拟合到标准特夫茨药代动力学模型。由于标准特夫茨模型可以简化为帕特拉克模型,当血管外细胞外空间中的对比剂回流到血浆时可以忽略不计,因此可以在特定时间显式求解 K。此外,可以使用特夫茨模型的导数形式直接从晚期稳态信号估计 v。在飞利浦 Achieva 3T-TX 扫描仪上从 18 名前列腺癌患者采集超快 DCE-MRI 数据。手动追踪前列腺癌、正常组织、臀肌和髂动脉的感兴趣区域(ROI)。使用带有预对比组织 T1 值的梯度回波信号方程和使用线性近似的“参考组织”模型计算每个 ROI 中随时间变化的对比剂浓度。从特夫茨模型提取的 K 与紧凑解决方案估计的 K 之间存在很强的相关性(r = 0.88-0.91,p <0.0001),用于前列腺癌和正常组织。此外,提取的 v 与估计的 v 之间存在中度相关性(r = 0.65-0.73,p <0.0001)。Bland-Altman 分析显示,从特夫茨模型提取的生理参数与从紧凑解决方案估计的生理参数之间具有中等至良好的一致性,绝对偏差小于 0.20 分钟和 0.10 分别为 K 和 v。紧凑解决方案可以减少系统误差和误差传播,并可以提高临床工作流程的效率。紧凑的解决方案需要高时间分辨率的 DCE-MRI,因为需要充分采样对比剂摄取的早期阶段。

相似文献

6
Effectiveness of Dynamic Contrast Enhanced MRI with a Split Dose of Gadoterate Meglumine for Detection of Prostate Cancer.
Acad Radiol. 2022 Jun;29(6):796-803. doi: 10.1016/j.acra.2021.07.028. Epub 2021 Sep 25.
7
Dynamic contrast-enhanced MRI: Study of inter-software accuracy and reproducibility using simulated and clinical data.
J Magn Reson Imaging. 2016 Jun;43(6):1288-300. doi: 10.1002/jmri.25101. Epub 2015 Dec 21.
8
Evaluation of Dispersion MRI for Improved Prostate Cancer Diagnosis in a Multicenter Study.
AJR Am J Roentgenol. 2018 Nov;211(5):W242-W251. doi: 10.2214/AJR.17.19215.

引用本文的文献

本文引用的文献

1
Value of DCE-MRI for staging and response evaluation in rectal cancer: A systematic review.
Eur J Radiol. 2017 Oct;95:155-168. doi: 10.1016/j.ejrad.2017.08.009. Epub 2017 Aug 12.
3
Assessment of micronecrotic tumor tissue using dynamic contrast-enhanced magnetic resonance imaging.
Phys Med. 2017 Feb;34:38-47. doi: 10.1016/j.ejmp.2017.01.010. Epub 2017 Jan 27.
5
The Tofts model in frequency domain: fast and robust determination of pharmacokinetic maps for dynamic contrast enhancement MRI.
Phys Med Biol. 2016 Dec 21;61(24):8462-8475. doi: 10.1088/0031-9155/61/24/8462. Epub 2016 Nov 15.
6
Estimation of contrast agent bolus arrival delays for improved reproducibility of liver DCE MRI.
Phys Med Biol. 2016 Oct 7;61(19):6905-6918. doi: 10.1088/0031-9155/61/19/6905. Epub 2016 Sep 12.
7
B1 and T1 mapping of the breast with a reference tissue method.
Magn Reson Med. 2016 Apr;75(4):1565-73. doi: 10.1002/mrm.25751. Epub 2015 May 27.
8
Dynamic contrast-enhanced MRI for the detection of prostate cancer: meta-analysis.
AJR Am J Roentgenol. 2015 Apr;204(4):W439-48. doi: 10.2214/AJR.14.13373.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验