Suppr超能文献

基于深度学习的导电织物超敏法及电阻抗数据的人工皮肤

Artificial skin through super-sensing method and electrical impedance data from conductive fabric with aid of deep learning.

机构信息

Engineering Tomography Laboratory, Department of Electronic and Electrical Engineering, University of Bath, Claverton Down, BA2 7AY, UK.

SICOM, PHELMA, Grenoble INP, 3 Parvis Louis Néel, 38000, Grenoble, FR, France.

出版信息

Sci Rep. 2019 Jun 20;9(1):8831. doi: 10.1038/s41598-019-45484-6.

Abstract

Sense of touch is a major part of man's communication with their environment. Artificial skins can help robots to have the same sense of touch, especially for their social interactions. This paper presents a pressure mapping sensing using piezo-resistive fabric to represent aspects of the sense of touch. In past few years' electrical impedance tomography (EIT) is considered to be able offer a good alternative for artificial skin in particular for its ease of adaptation for large area skin compared to individual matrix based sensors. The EIT has also very good temporal performance in data collection allowing for monitoring of fast responses to touch stimulation, enabling a truly real time touch sensing. Electromechanical responses of a conductive fabric can be exploited using EIT to create a low cost and large area touch sensing. Such electromechanical properties are often very complex, so to improve the imaging resolution and touch visibility an artificial intelligent (AI) was used in addition to the state of the art spatio-temporal imaging algorithm. This work demonstrates a step towards an integrated seamless skin with large area sensing in dynamical settings, closer to natural human skin's behaviour. For the first time a dynamical touch sensing are studies by means of a spatio-temporal based electrical impedance tomography (EIT) imaging on a conductive fabric. The experimental results demonstrated the successful results by a combined AI with dynamical EIT imaging results in single and multiple points of touch.

摘要

触觉是人类与环境交流的重要组成部分。人造皮肤可以帮助机器人拥有相同的触觉,特别是在社交互动方面。本文提出了一种使用压阻织物进行压力映射感应的方法,以表示触觉的各个方面。在过去的几年中,电阻抗断层成像(EIT)被认为是人造皮肤的一种很好的替代方法,特别是因为与基于单个矩阵的传感器相比,它更容易适应大面积皮肤。EIT 在数据采集方面也具有非常好的时间性能,可以监测到对触摸刺激的快速响应,从而实现真正的实时触摸感应。导电织物的机电响应可以利用 EIT 来创建低成本和大面积触摸感应。这种机电特性通常非常复杂,因此为了提高成像分辨率和触摸可见度,除了最先进的时空成像算法外,还使用了人工智能 (AI)。这项工作展示了朝着在动态环境中具有大面积感应的集成无缝皮肤迈出的一步,更接近天然人类皮肤的行为。本文首次通过基于时空的电阻抗断层成像 (EIT) 对导电织物进行动态触摸感应研究。实验结果通过人工智能与动态 EIT 成像结果在单点和多点触摸方面的结合,成功地证明了这一结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/89e3/6586820/659c43477984/41598_2019_45484_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验