Physics Department, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
Halcyon Molecular, 505 Penobscot Drive, Redwood City, CA, 94063, USA.
Sci Rep. 2019 Jun 20;9(1):8889. doi: 10.1038/s41598-019-45351-4.
Low-energy electrons offer a unique possibility for long exposure imaging of individual biomolecules without significant radiation damage. In addition, low-energy electrons exhibit high sensitivity to local potentials and thus can be employed for imaging charges as small as a fraction of one elementary charge. The combination of these properties makes low-energy electrons an exciting tool for imaging charge transport in individual biomolecules. Here we demonstrate the imaging of individual deoxyribonucleic acid (DNA) molecules at the resolution of about 1 nm with simultaneous imaging of the charging of the DNA molecules that is of the order of less than one elementary charge per nanometer. The cross-correlation analysis performed on different sections of the DNA network reveals that the charge redistribution between the two regions is correlated. Thus, low-energy electron microscopy is capable to provide simultaneous imaging of macromolecular structure and its charge distribution which can be beneficial for imaging and constructing nano-bio-sensors.
低能电子为在不造成显著辐射损伤的情况下对单个生物分子进行长时间曝光成像提供了独特的可能性。此外,低能电子对局部电势非常敏感,因此可用于对小至单个基本电荷分数的电荷进行成像。这些特性的结合使得低能电子成为成像单个生物分子中电荷输运的令人兴奋的工具。在这里,我们证明了在大约 1nm 的分辨率下对单个脱氧核糖核酸(DNA)分子进行成像,同时对 DNA 分子的充电进行成像,其每纳米的电荷量小于一个基本电荷。对 DNA 网络的不同部分进行的互相关分析表明,两个区域之间的电荷再分配是相关的。因此,低能电子显微镜能够提供对大分子结构及其电荷分布的同时成像,这对于成像和构建纳米生物传感器可能是有益的。