Zeng Weixuan, Zhou Tao, Ning Weimin, Zhong Cheng, He Jiawei, Gong Shaolong, Xie Guohua, Yang Chuluo
Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, P. R. China.
Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
Adv Mater. 2019 Aug;31(33):e1901404. doi: 10.1002/adma.201901404. Epub 2019 Jun 20.
Developing high-efficiency solution-processable thermally activated delayed-fluorescence (TADF) emitters, especially in longer wavelength regions, is a formidable challenge. Three red TADF emitters, namely NAI_R1, NAI_R2, and NAI_R3, are developed by phenyl encapsulation and tert-butyl substitution on a prototypical 1,8-naphthalimide-acridine hybrid. This design strategy not only grants these molecules high solubility, excellent thermal stability, and good film-forming ability, but also pulls down their charge-transfer (CT) energy levels excited states. Furthermore, dispersing these emitters into two different host materials of mCP and mCPCN finely tailors their CT-state energy levels. More importantly, a synergistic combination of molecular engineering and host selection can effectively manipulate the competition between the radiative and nonradiative decay rates of the CT singlet states of these emitters and the reverse intersystem crossing from their triplet to singlet states. Consequently, the optimal combination of NAI_R3 emitter and mCP host successfully results in a state-of-the-art external quantum efficiency (EQE) of 22.5% for solution-processed red TADF organic light-emitting diodes (OLEDs) with an emission peak above 620 nm. This finding demonstrates that a synergistic strategy of molecular engineering and host selection with TADF emitters could provide a new pathway for developing efficient solution-processable TADF systems.
开发高效的溶液可加工热激活延迟荧光(TADF)发光体,尤其是在更长波长区域,是一项艰巨的挑战。通过在典型的1,8-萘二甲酰亚胺-吖啶杂化物上进行苯基封装和叔丁基取代,开发了三种红色TADF发光体,即NAI_R1、NAI_R2和NAI_R3。这种设计策略不仅赋予这些分子高溶解性、出色的热稳定性和良好的成膜能力,还降低了它们激发态的电荷转移(CT)能级。此外,将这些发光体精细地分散到mCP和mCPCN两种不同的主体材料中,可以调整它们的CT态能级。更重要的是,分子工程和主体选择的协同组合可以有效地控制这些发光体CT单重态的辐射和非辐射衰减率之间的竞争以及它们从三重态到单重态的反向系间窜越。因此,NAI_R3发光体与mCP主体的最佳组合成功地实现了溶液加工的红色TADF有机发光二极管(OLED)的22.5%的最先进外量子效率(EQE),其发射峰高于620 nm。这一发现表明,TADF发光体的分子工程和主体选择协同策略可以为开发高效的溶液可加工TADF系统提供一条新途径。