Kothavale Shantaram, Kim Seung Chan, Cheong Kiun, Zeng Songkun, Wang Yafei, Lee Jun Yeob
School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi, 16419, Republic of Korea.
School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, 213164, P. R. China.
Adv Mater. 2023 Mar;35(13):e2208602. doi: 10.1002/adma.202208602. Epub 2023 Feb 23.
In spite of recent research progress in red thermally activated delayed fluorescence (TADF) emitters, highly efficient solution-processable pure red TADF emitters are rarely reported. Most of the red TADF emitters reported to date are designed using a rigid acceptor unit which renders them insoluble and unsuitable for solution-processed organic light-emitting diodes (OLEDs). To resolve this issue, a novel TADF emitter, 6,7-bis(4-(bis(4-(tert-butyl)phenyl)amino)phenyl)-2,3-bis(4-(tert-butyl)phenyl)quinoxaline-5,8-dicarbonitrile (tBuTPA-CNQx) is designed and synthesized. The highly twisted donor-acceptor architecture and appropriate highest occupied molecular orbital/lowest unoccupied molecular orbital distribution lead to a very small singlet-triplet energy gap of 0.07 eV, high photoluminescence quantum yield of 92%, and short delayed fluorescence lifetime of 52.4 µs. The peripheral t-butyl phenyl decorated quinoxaline acceptor unit and t-butyl protected triphenylamine donor unit are proven to be useful building blocks to improve solubility and minimize the intermolecular interaction. The solution-processed OLED based on tBuTPA-CNQx achieves a high external quantum efficiency (EQE) of 16.7% with a pure red emission peak at 662 nm, which is one of the highest EQE values reported till date in the solution-processed pure red TADF OLEDs. Additionally, vacuum-processable OLED based on tBuTPA-CNQx exhibits a high EQE of 22.2% and negligible efficiency roll-off.
尽管红色热激活延迟荧光(TADF)发光体最近在研究上取得了进展,但高效的可溶液加工纯红色TADF发光体却鲜有报道。迄今为止报道的大多数红色TADF发光体都是采用刚性受体单元设计的,这使得它们不溶于水,不适用于溶液加工有机发光二极管(OLED)。为了解决这个问题,设计并合成了一种新型TADF发光体6,7-双(4-(双(4-(叔丁基)苯基)氨基)苯基)-2,3-双(4-(叔丁基)苯基)喹喔啉-5,8-二甲腈(tBuTPA-CNQx)。高度扭曲的供体-受体结构和适当的最高占据分子轨道/最低未占据分子轨道分布导致单线态-三线态能隙非常小,仅为0.07 eV,光致发光量子产率高达92%,延迟荧光寿命短至52.4 μs。事实证明,外围带有叔丁基苯基的喹喔啉受体单元和叔丁基保护的三苯胺供体单元是提高溶解性和最小化分子间相互作用的有用结构单元。基于tBuTPA-CNQx的溶液加工OLED实现了16.7%的高外量子效率(EQE),在662 nm处有纯红色发射峰,这是迄今为止溶液加工纯红色TADF OLED中报道的最高EQE值之一。此外,基于tBuTPA-CNQx的真空加工OLED表现出22.2%的高EQE,且效率滚降可忽略不计。