Department of Earth and Environmental Sciences, Paleontology & Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany.
Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
Sci Adv. 2019 Jun 19;5(6):eaaw4108. doi: 10.1126/sciadv.aaw4108. eCollection 2019 Jun.
Ammonia-oxidizing archaea (AOA) dominate microbial communities throughout oxic subseafloor sediment deposited over millions of years in the North Atlantic Ocean. Rates of nitrification correlated with the abundance of these dominant AOA populations, whose metabolism is characterized by ammonia oxidation, mixotrophic utilization of organic nitrogen, deamination, and the energetically efficient chemolithoautotrophic hydroxypropionate/hydroxybutyrate carbon fixation cycle. These AOA thus have the potential to couple mixotrophic and chemolithoautotrophic metabolism via mixotrophic deamination of organic nitrogen, followed by oxidation of the regenerated ammonia for additional energy to fuel carbon fixation. This metabolic feature likely reduces energy loss and improves AOA fitness under energy-starved, oxic conditions, thereby allowing them to outcompete other taxa for millions of years.
氨氧化古菌(AOA)在北大西洋数百万年沉积的含氧海底沉积物中主导着微生物群落。硝化作用的速率与这些优势 AOA 种群的丰度相关,其代谢特征是氨氧化、有机氮的混合营养利用、脱氨以及能量高效的化能自养羟基丙酸/羟基丁酸碳固定循环。因此,这些 AOA 有可能通过混合营养脱氨作用将混合营养和化能自养代谢偶联起来,然后氧化再生的氨以获取额外的能量来为碳固定供能。这种代谢特征可能会减少在能量匮乏的有氧条件下的能量损失,并提高 AOA 的适应度,从而使它们在数百万年的时间里能够与其他分类群竞争。