Suppr超能文献

比较宏基因组学表明了底栖和浮游伍氏菌科的代谢生态位分化。

Comparative metagenomics indicates metabolic niche differentiation of benthic and planktonic Woeseiaceae.

作者信息

Viver Tomeu, Knittel Katrin, Amann Rudolf, Orellana Luis H

机构信息

Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany.

Ecological Genomics Group, Max Planck Institute for Marine Microbiology, Bremen, Germany.

出版信息

Environ Microbiome. 2025 Jun 17;20(1):74. doi: 10.1186/s40793-025-00732-3.

Abstract

BACKGROUND

Benthic microbiomes exhibit remarkable temporal stability, contrasting with the dynamic, substrate-driven successions of bacterioplankton. Nonetheless, understanding their role in carbon cycling and interactions between these two microbial communities is limited due to the complexity of benthic microbiomes.

RESULTS

Here, we used a long-reads (LRs) metagenomic approach to examine benthic microbiomes and compared them to the microbiomes in the overlaying water column and on particles, sampled at the same site and time off the island Heligoland in the North Sea. Although the diversity is vast in marine sediments, we recovered high quality metagenome assembled genomes (MAGs). Based on taxonomy and metabolic annotation of predicted proteins, benthic microbiomes are distinctly different from pelagic microbiomes. When comparing the 270 MAGs from free living and particle attached microbes from the water column to 115 MAGs from sediments only 2 MAGs affiliated to Acidimicrobiia and Desulfocapsaceae were shared at species level. Although, we recovered MAGs with the same taxonomic annotation in pelagic and benthic microbiomes, their metabolic potentials were different. A prominent example was the family Woeseiaceae that was among the most abundant taxa in the sediments. In benthic Woeseiaceae MAGs, we found polysaccharide utilization loci (PULs), predicted to target laminarin, alginate, and α-glucan. In contrast, pelagic Woeseiaceae MAGs were only recovered in the particle attached but not in the free-living fraction, and lacked PULs. They encoded a significantly more sulfatases and peptidases genes. Additionally, while genes involved in iron acquisition, gene regulation, and iron storage were widespread in Woeseiaceae MAGs, genes linked to dissimilatory iron reduction were mostly restricted to benthic Woeseiaceae, suggesting niche-specific adaptations to sediment redox conditions. Both, benthic and pelagic particle-attached Woeseiaceae MAGs encoded pilus TadA genes, which are essential for adhesion, colonization, and biofilm formation.

CONCLUSIONS

LR sequencing is currently the most valuable tool for analyzing highly diverse benthic microbiomes. The small overlap of MAGs from water column and sediments indicated a limited bentho-pelagic coupling. The data suggest that Woeseiaceae have habitat-specific metabolic specialization: while benthic Woeseiaceae possess the metabolic capabilities to utilize fresh organic compounds like laminarin derived from algae blooms, and to perform dissimilatory nitrate, nitrite and iron reduction for gain energy, particle attached Woeseiaceae from the water column may be specialized in degrading protein-rich and sulfated organic matter likely reflecting adaptation to the different types of organic matter and redox conditions in sediments vs. the water column.

摘要

背景

底栖微生物群落表现出显著的时间稳定性,这与浮游细菌群落动态的、受底物驱动的演替形成对比。尽管如此,由于底栖微生物群落的复杂性,人们对它们在碳循环中的作用以及这两个微生物群落之间的相互作用的理解仍然有限。

结果

在这里,我们使用长读长(LRs)宏基因组方法来研究底栖微生物群落,并将它们与在北海黑尔戈兰岛同一地点和时间采集的覆盖水柱和颗粒上的微生物群落进行比较。尽管海洋沉积物中的多样性很大,但我们获得了高质量的宏基因组组装基因组(MAGs)。基于预测蛋白质的分类学和代谢注释,底栖微生物群落与浮游微生物群落明显不同。当将来自水柱中自由生活和附着在颗粒上的微生物的270个MAGs与来自沉积物的115个MAGs进行比较时,在物种水平上仅共享了2个隶属于酸微菌纲和脱硫荚菌科的MAGs。尽管我们在浮游和底栖微生物群落中获得了具有相同分类学注释的MAGs,但它们的代谢潜力不同。一个突出的例子是沃氏菌科,它是沉积物中最丰富的分类群之一。在底栖沃氏菌科MAGs中,我们发现了多糖利用位点(PULs),预计其靶向海带多糖、藻酸盐和α-葡聚糖。相比之下,浮游沃氏菌科MAGs仅在附着于颗粒的部分中被发现,而在自由生活部分中未被发现,并且缺乏PULs。它们编码的硫酸酯酶和肽酶基因明显更多。此外,虽然参与铁获取、基因调控和铁储存的基因在沃氏菌科MAGs中广泛存在,但与异化铁还原相关的基因大多仅限于底栖沃氏菌科,这表明对沉积物氧化还原条件的生态位特异性适应。底栖和浮游颗粒附着的沃氏菌科MAGs都编码菌毛TadA基因,这对于粘附、定殖和生物膜形成至关重要。

结论

LR测序目前是分析高度多样化的底栖微生物群落最有价值的工具。水柱和沉积物中MAGs的小重叠表明底栖-浮游耦合有限。数据表明沃氏菌科具有栖息地特异性的代谢特化:虽然底栖沃氏菌科具有利用来自藻类大量繁殖的新鲜有机化合物如海带多糖的代谢能力,并进行异化硝酸盐、亚硝酸盐和铁还原以获取能量,但水柱中附着在颗粒上的沃氏菌科可能专门降解富含蛋白质和硫酸化的有机物质,这可能反映了对沉积物与水柱中不同类型有机物质和氧化还原条件的适应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0177/12175321/5f72b17482f4/40793_2025_732_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验