Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy.
Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy.
Biochim Biophys Acta Bioenerg. 2020 Apr 1;1861(4):148035. doi: 10.1016/j.bbabio.2019.06.007. Epub 2019 Jun 19.
Proper assembly of plant photosystem II, in the appressed region of thylakoids, allows for both efficient light harvesting and the dissipation of excitation energy absorbed in excess. The core moiety of wild type supercomplex is associated with monomeric antennae that, in turn, bind peripheral trimeric LHCII complexes. Acclimation to light environment dynamics involves structural plasticity within PSII-LHCs supercomplexes, including depletion in LHCII and CP24. Here, we report on the acclimation of NoM, an Arabidopsis mutant lacking monomeric LHCs but retaining LHCII trimer. Lack of monomeric LHCs impaired the operation of both photosynthetic electron transport and state transitions, despite the fact that NoM underwent a compensatory over-accumulation of the LHCII complement compared to the wild type. Mutant plants displayed stunted growth compared to the wild type when probed over a range of light conditions. When exposed to short-term excess light, NoM showed higher photosensitivity and enhanced singlet oxygen release than the wild type, whereas long-term acclimation under stress conditions was unaffected. Analysis of pigment-binding supercomplexes showed that the absence of monomeric LHCs did affect the macro-organisation of photosystems: large PSI-LHCII megacomplexes were more abundant in NoM, whereas the assembly of PSII-LHCs supercomplexes was impaired. Observation by electron microscopy (EM) and image analysis of thylakoids highlighted impaired granal stacking and membrane organisation, with a heterogeneous distribution of PSII and LHCII compared to the wild type. It is concluded that monomeric LHCs are critical for the structural and functional optimisation of the photosynthetic apparatus.
植物光系统 II 的正确组装,在类囊体的紧密区域,允许有效光捕获和吸收多余激发能的耗散。野生型超复合体的核心部分与单体天线相关,反过来,单体天线又与周围的三聚体 LHCII 复合物结合。对光环境动态的适应涉及 PSII-LHC 超复合体的结构可塑性,包括 LHCII 和 CP24 的耗竭。在这里,我们报告了 NoM 的适应,NoM 是一种缺乏单体 LHCs 但保留 LHCII 三聚体的拟南芥突变体。尽管 NoM 与野生型相比,经历了 LHCII 补体的代偿性过度积累,但缺乏单体 LHCs 会损害光合作用电子传递和状态转变的运作。与野生型相比,突变体植物在一系列光照条件下表现出生长迟缓。当暴露于短期过量光照时,NoM 比野生型表现出更高的光敏感性和增强的单线态氧释放,而在应激条件下的长期适应则不受影响。对色素结合超复合体的分析表明,单体 LHCs 的缺失确实会影响光系统的宏观组织:在 NoM 中,PSI-LHCII 巨型复合物更为丰富,而 PSII-LHCs 超复合体的组装受到损害。电子显微镜 (EM)观察和类囊体的图像分析突出了粒层堆叠和膜组织受损,与野生型相比,PSII 和 LHCII 的分布不均匀。因此,可以得出结论,单体 LHCs 对于光合作用装置的结构和功能优化至关重要。