Dipartimento di Biotecnologie, Università di Verona, 37134 Verona, Italy.
Laboratory of Biophysics, Wageningen University, 6700 ET Wageningen, The Netherlands.
Plant Physiol. 2022 Mar 28;188(4):2241-2252. doi: 10.1093/plphys/kiab579.
Photosynthesis powers nearly all life on Earth. Light absorbed by photosystems drives the conversion of water and carbon dioxide into sugars. In plants, photosystem I (PSI) and photosystem II (PSII) work in series to drive the electron transport from water to NADP+. As both photosystems largely work in series, a balanced excitation pressure is required for optimal photosynthetic performance. Both photosystems are composed of a core and light-harvesting complexes (LHCI) for PSI and LHCII for PSII. When the light conditions favor the excitation of one photosystem over the other, a mobile pool of trimeric LHCII moves between both photosystems thus tuning their antenna cross-section in a process called state transitions. When PSII is overexcited multiple LHCIIs can associate with PSI. A trimeric LHCII binds to PSI at the PsaH/L/O site to form a well-characterized PSI-LHCI-LHCII supercomplex. The binding site(s) of the "additional" LHCII is still unclear, although a mediating role for LHCI has been proposed. In this work, we measured the PSI antenna size and trapping kinetics of photosynthetic membranes from Arabidopsis (Arabidopsis thaliana) plants. Membranes from wild-type (WT) plants were compared to those of the ΔLhca mutant that completely lacks the LHCI antenna. The results showed that "additional" LHCII complexes can transfer energy directly to the PSI core in the absence of LHCI. However, the transfer is about two times faster and therefore more efficient, when LHCI is present. This suggests LHCI mediates excitation energy transfer from loosely bound LHCII to PSI in WT plants.
光合作用为地球上几乎所有的生命提供能量。被光合作用系统吸收的光驱动水和二氧化碳转化为糖。在植物中,光系统 I(PSI)和光系统 II(PSII)串联工作,将电子从水中转移到 NADP+。由于两个光合作用系统主要串联工作,因此需要平衡的激发压力才能实现最佳光合作用性能。两个光合作用系统都由一个核心和一个用于 PSI 的光捕获复合物(LHC-I)和一个用于 PSII 的 LHC-II 组成。当光照条件有利于一个光合作用系统比另一个光合作用系统激发时,一个三聚体 LHC-II 的可动池在两个光合作用系统之间移动,从而在称为状态转换的过程中调节它们的天线横截面积。当 PSII 过激发时,多个 LHC-II 可以与 PSI 结合。一个三聚体 LHC-II 结合到 PSI 的 PsaH/L/O 位点,形成一个特征良好的 PSI-LHCI-LHC-II 超复合物。“额外”LHC-II 的结合位点仍不清楚,尽管有人提出了 LHC-I 的介导作用。在这项工作中,我们测量了来自拟南芥(Arabidopsis thaliana)植物的光合作用膜的 PSI 天线大小和捕光动力学。将野生型(WT)植物的膜与完全缺乏 LHC-I 的ΔLhca 突变体的膜进行了比较。结果表明,在没有 LHC-I 的情况下,“额外”LHC-II 复合物可以直接将能量转移到 PSI 核心。然而,当存在 LHC-I 时,转移速度要快两倍左右,因此效率更高。这表明 LHC-I 在 WT 植物中介导从松散结合的 LHC-II 到 PSI 的激发能量转移。