Suppr超能文献

源解析支持空气质量规划:现有方法的优缺点。

Source apportionment to support air quality planning: Strengths and weaknesses of existing approaches.

机构信息

European Commission, Joint Research Centre, Ispra, Italy.

Université de Strasbourg, Laboratoire Image Ville Environnement, Strasbourg, France.

出版信息

Environ Int. 2019 Sep;130:104825. doi: 10.1016/j.envint.2019.05.019. Epub 2019 Jun 18.

Abstract

Information on the origin of pollution constitutes an essential step of air quality management as it helps identifying measures to control air pollution. In this work, we review the most widely used source-apportionment methods for air quality management. Using theoretical and real-case datasets we study the differences among these methods and explain why they result in very different conclusions to support air quality planning. These differences are a consequence of the intrinsic assumptions that underpin the different methodologies and determine/limit their range of applicability. We show that ignoring their underlying assumptions is a risk for efficient/successful air quality management as these methods are sometimes used beyond their scope and range of applicability. The simplest approach based on increments (incremental approach) is often not suitable to support air quality planning. Contributions obtained through mass-transfer methods (receptor models or tagging approaches built in air quality models) are appropriate to support planning but only for specific pollutants. Impacts obtained via "brute-force" methods are the best suited but it is important to assess carefully their application range to make sure they reproduce correctly the prevailing chemical regimes.

摘要

污染来源信息是空气质量管理的重要步骤,因为它有助于确定控制空气污染的措施。在这项工作中,我们回顾了空气质量管理中最广泛使用的源解析方法。使用理论和实际案例数据集,我们研究了这些方法之间的差异,并解释了为什么它们会得出非常不同的结论,以支持空气质量规划。这些差异是不同方法学所依据的内在假设的结果,并决定/限制了它们的适用范围。我们表明,忽略其潜在假设是有效/成功的空气质量管理的风险,因为这些方法有时会超出其范围和适用范围。基于增量的最简单方法(增量方法)通常不适合支持空气质量规划。通过质量传递方法(受体模型或在空气质量模型中构建的标记方法)获得的贡献适合支持规划,但仅适用于特定污染物。通过“强力”方法获得的影响是最合适的,但重要的是要仔细评估其应用范围,以确保它们正确再现流行的化学状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1bf/6686078/c7113148b3a7/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验