Suppr超能文献

CaPSSA:使用突变和表达数据进行癌症生物标志物基因的可视化评估,以进行患者分层和生存分析。

CaPSSA: visual evaluation of cancer biomarker genes for patient stratification and survival analysis using mutation and expression data.

机构信息

Ewha Research Center for Systems Biology (ERCSB), Ewha Womans University, Seoul 03760, Korea.

Interdisciplinary Program in Bioinformatics, College of Natural Science, Seoul National University, Seoul 08826, Korea.

出版信息

Bioinformatics. 2019 Dec 15;35(24):5341-5343. doi: 10.1093/bioinformatics/btz516.

Abstract

SUMMARY

Predictive biomarkers for patient stratification play critical roles in realizing the paradigm of precision medicine. Molecular characteristics such as somatic mutations and expression signatures represent the primary source of putative biomarker genes for patient stratification. However, evaluation of such candidate biomarkers is still cumbersome and requires multistep procedures especially when using massive public omics data. Here, we present an interactive web application that divides patients from large cohorts (e.g. The Cancer Genome Atlas, TCGA) dynamically into two groups according to the mutation, copy number variation or gene expression of query genes. It further supports users to examine the prognostic value of resulting patient groups based on survival analysis and their association with the clinical features as well as the previously annotated molecular subtypes, facilitated with a rich and interactive visualization. Importantly, we also support custom omics data with clinical information.

AVAILABILITY AND IMPLEMENTATION

CaPSSA (Cancer Patient Stratification and Survival Analysis) runs on a web-browser and is freely available without restrictions at http://www.kobic.re.kr/capssa/. The source code is available on https://github.com/yjjang/capssa.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

摘要

预测性生物标志物在患者分层中起着至关重要的作用,有助于实现精准医学的模式。体细胞突变和表达特征等分子特征是患者分层潜在生物标志物基因的主要来源。然而,此类候选生物标志物的评估仍然很繁琐,需要多步程序,特别是在使用大量公共组学数据时。在这里,我们提出了一个交互式网络应用程序,根据查询基因的突变、拷贝数变异或基因表达,将来自大型队列(例如癌症基因组图谱,TCGA)的患者动态地分为两组。它还支持用户根据生存分析以及与临床特征和先前注释的分子亚型的相关性来检查由此产生的患者组的预后价值,这得益于丰富的交互式可视化。重要的是,我们还支持带有临床信息的定制组学数据。

可用性和实现

CaPSSA(癌症患者分层和生存分析)在网络浏览器上运行,可在 http://www.kobic.re.kr/capssa/ 上免费使用,没有限制。源代码可在 https://github.com/yjjang/capssa 上获得。

补充信息

补充数据可在生物信息学在线获得。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验